离散时间系统的特性分析
在信号与系统的研究中,离散时间系统的各种特性是非常重要的研究内容,包括系统的线性、时不变性、稳定性、因果性以及可逆性等。下面我们将详细探讨这些特性。
1. 序列分解
有一种更直接的序列分解方法。分解应从单位阶跃开始,在索引 (n = 0) 时产生值 (1)。由于 (x(n)) 在 (n = 1) 时增加到值 (2),所以要添加一个延迟的单位阶跃 (u(n - 1))。在 (n = 2) 时,(x(n)) 的幅度又增加了 (1),因此再添加延迟的单位阶跃 (u(n - 2))。此时,对于 (n > 3),需要使序列回到零,这可以通过减去延迟的单位阶跃 (3u(n - 3)) 来实现。
2. 离散时间系统的线性特性
对于以下系统,输入为 (x(n)),输出为 (y(n)),我们来判断系统的齐次性、可加性和线性。
- 系统 (y(n) = \log(x(n)))
- 齐次性 :若系统是齐次的,对于任意输入 (x(n)) 和所有复常数 (c),应有 (y(n) = T[cx(n)] = cT[x(n)])。但该系统对 (x_1(n) = cx(n)) 的响应为 (\log(cx(n))),并不等于 (c\log(x(n))),所以系统不是齐次的。
- 可加性 :若 (y_1(n)) 和 (y_2(n)) 分别是对输入 (x_1(n)) 和 (x_2(n)) 的响应,那么对 (x(n) = x_1(n) + x_2(n)) 的响应应为 (y(n) = y_1(n) + y_2(n))。而该系统