信号与系统:级联特性、卷积及差分方程详解
1. 级联系统特性分析
在信号与系统中,级联系统的特性是一个重要的研究内容。假设有两个系统 (S_1) 和 (S_2) 级联,下面来分析其移位不变性、稳定性和因果性。
- 移位不变性 :若将 (x(n - n_0)) 输入到 (S_1),其响应为 (w(n - n_0))。由于 (S_2) 是移位不变的,对 (w(n - n_0)) 的响应将是 (y(n - n_0))。所以,级联系统对 (x(n - n_0)) 的响应是 (y(n - n_0)),这表明级联系统是移位不变的。
- 稳定性 :若 (S_1) 是稳定的,当输入 (x(n)) 有界时,输出 (w(n)) 也有界。而 (w(n)) 作为有界输入进入稳定系统 (S_2),响应 (y(n)) 同样有界。因此,级联系统是稳定的。
- 因果性 :若 (S_2) 是因果的,在 (n = n_0) 时刻的 (y(n)) 仅取决于 (n \leq n_0) 时的 (w(n))。又因为 (S_1) 是因果的,(n \leq n_0) 时的 (w(n)) 仅取决于 (n \leq n_0) 时的输入 (x(n))。所以,级联系统是因果的。
然而,当 (S_1) 和 (S_2) 具有某些特性时,级联系统的特性并不一定与它们相同:
- 非线性情况 :若 (S_1) 和 (S_2) 是非线性的,级联系统不一定是非线性的。因为第二个系统可能会消除第一个系统的非线性。例如,某些情况下,两个非线性系统级联后可能成为恒等系统,从而是线性的。