学习insightface 的人脸识别

1.Insightface_pytorch版本的自定义数据准备过程

https://github.com/artintel/LearningCode/blob/master/insightface_pytorch_datasets_make/README.md

https://github.com/artintel/LearningCode/tree/master/insightface_pytorch_datasets_make

2.mxnet_insightface开源代码使用——自定义数据集制作

https://zhuanlan.zhihu.com/p/92738758

3.insight face数据打包(一):LFW

https://blog.csdn.net/ustczhng2012/article/details/113512500

4.Build-Your-Own-Face-Model

https://github.com/siriusdemon/Build-Your-Own-Face-Model/tree/master/recognition

https://github.com/siriusdemon/Build-Your-Own-Face-Model/blob/master/recognition/blog/data.md

5.arcface_torch

https://github.com/deepinsight/insightface/blob/master/recognition/arcface_torch/docs/prepare_custom_dataset.md

https://github.com/deepinsight/insightface/blob/master/recognition/arcface_torch/docs/prepare_custom_dataset.md

6.AI 实战 - 基于 insightface 的人脸识别

https://blog.csdn.net/qq_25439881/article/details/125179117

7.face recognition based on yolov8 & Arcface

https://github.com/JOKER-3-z/EASY_USE_face_recognition

8.yoloV5-arcface_forlearn

https://github.com/ooooxianyu/yoloV5-arcface_forlearn

9. yoloV5-arcface_forlearn-master

https://github.com/Lose-the-mind/yoloV5-arcface_forlearn-master

10.Pytorch-FaceNet-DogDataset

FaceNet Implementation on DogFace Dataset

https://github.com/fcernafukuzaki/Pytorch-FaceNet-DogDataset

Paper To Code implementation of Facenet in native pytorch on Dog Dataset

11.insightface pytorch 答疑

https://blog.csdn.net/minstyrain/article/details/126901471

快速上手 PyTorch 人脸相似度计算方法 ArcFace

基于insightface实现的人脸识别和人脸注册-CSDN博客

https://yeyupiaoling.blog.csdn.net/article/details/108304894

ArcFace详解与实践-CSDN博客

人脸识别从原理到实践

https://github.com/zhongyy/SFace/tree/main/SFace_torch

https://github.com/deepinsight/insightface/wiki/Dataset-Zoo

  1. 训练公开数据

先从insightface datasets下载数据,里面提供了对齐(112x112)好的人脸文件,并打包成rec格式加速读取,如果需要原始文件图片,可参考load_images_from_bin.py自行保存,也可使用image_iter_rec.py里的FaceDataset直接加载数据

  1. insightface datasets:

https://github.com/deepinsight/insightface/tree/master/recognition/_datasets_

  1. load_images_from_bin.py:

https://github.com/xuexingyu24/MobileFaceNet_Tutorial_Pytorch/blob/master/data_set/load_images_from_bin.py

  1. image_iter_rec.py:

https://github.com/zhongyy/SFace/blob/main/SFace_torch/image_iter_rec.py

人脸识别0-10:insightFace-半监督系统搭建(5)-流程总结,代码分享。_insightface casia-facev5-CSDN博客

  1. 训练自己的数据

训练自己的数据要复杂很多,人半监督系统搭建(5)-流程总结首先通过爬虫等手段获取人脸图片,每个人放一个文件夹https://github.com/DarkIsComing/1.FaceRecognition

MTCNN训练-CSDN博客

MTCNN训练

要部署的话可以使用MTCNN

https://github.com/imistyrain/MTCNN

其提供了部署全平台实现,包括C++、python、ncnn和tensorflow,还有加速版本和opencv直接加载版本,是所有版本中的集大成者.

如果想了解算法原理,可以参考

MTCNN_Step_by_Step

https://github.com/xuexingyu24/MTCNN_Tutorial/blob/master/MTCNN_Step_by_Step.ipynb

本文的训练流程参考至

MTCNN_Training_Step_by_Step

https://github.com/xuexingyu24/MTCNN_Tutorial/blob/master/MTCNN_Training_Step_by_Step.ipynb

提供了主流的pytorch实现

训练数据准备

MTCNN混合了三类任务: 人脸/非人脸分类、人脸框回归和人脸关键点定位. WIDER FACE (左图) 用来进行人脸分类和框回归. CNN_FacePoint (右图) 用来进行关键点定位.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值