Python 中的迭代器(iter、next)与生成器(yield)解析

本文介绍了Python中的迭代器和生成器的概念与用法。迭代器是一个可以记住遍历位置的对象,用于迭代可迭代对象,如列表、字典和字符串。生成器则是一种特殊的迭代器,可通过函数返回,使用yield语句实现惰性计算。for循环可以自动处理可迭代对象和迭代器,简化迭代过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python 中的迭代器(Iterator)是一个可以记住遍历位置的对象,用于迭代列表、元组、字典、集合和字符串等可迭代(Iterable)对象,迭代器从集合的第一个元素开始访问,直到所有的元素被访问完结束,并且只能往前不会后退。使用 collections.abc 库中的 Iterable 和 Iterator 可以判断对象是否可迭代和是否为迭代器。

>>> from collections.abc import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance('abc', Iterable)
True
>>> isinstance(100, Iterable)
False
>>> from collections.abc import Iterator
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False
>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True

正如上面代码所示,列表、字典和字符串都是可迭代的,而数字就不是可迭代的。但列表、字典和字符串都不是迭代器,因为可迭代的对象(如列表、元组、字典、集合和字符串),得先使用 iter() 方法把它们初始化为迭代器对象之后,才能使用 next() 方法对其进行迭代。所以 iter([])iter('abc') 都是迭代器。

有了迭代器之后,就可以用 next() 方法对其进行迭代,如果迭代器的内容已经全部迭代完了,就会返回一个 StopIteration 的错误:

>>> list=[1, 2, 3, 4]
>>> it = iter(list)    # 创建迭代器对象
>>> print (next(it))   # 输出迭代器的下一个元素
1
>>> print (next(it))
2
>>> print (next(it))
3
>>> print (next(it))
4
>>> print (next(it))
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

不断地调用 next() 方法显然太麻烦了,最简洁的方法是使用 for 循环

>>> for i in [1, 2, 3, 4]:
...     print(i)
... 
1
2
3
4

注意 for 循环接收的只是可迭代对象而不是迭代器,所以实际上 for 循环帮我们同时完成了 iter()next() 方法,并且在遇到 StopIteration 就会自动退出循环。以下代码和上面是等价的:

it = iter([1, 2, 3, 4, 5])  # 创建迭代器对象
# 循环:
while True:
    try:
        i = next(it)  # 输出迭代器的下一个元素
        print(i)
    except StopIteration:  # 遇到StopIteration就退出循环
        break

说完迭代器,就轮到生成器了。所谓生成器(generator) 就是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器

生成器(函数)有两种写法,第一种是类似于列表生成式(推导式) 的写法,只不过把列表的中括号换成小括号而已:

>>> f = (x * x for x in range(10))
>>> f
<generator object <genexpr> at 0x1022ef630>

f 就是一个迭代器,其函数为求平方,所以能使用 next() 方法进行迭代:

>>> next(f)
0
>>> next(f)
1
>>> next(f)
4
>>> next(f)
9
>>> next(f)
16
>>> next(f)
25
>>> next(f)
36
>>> next(f)
49
>>> next(f)
64
>>> next(f)
81
>>> next(g)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

同样地,用 for 循环既然能处理可迭代对象,当然也可以处理迭代器,如下

>>> f = (x * x for x in range(10))
>>> for i in f:
...     print(i)
... 
0
1
4
9
16
25
36
49
64
81

第二种生成器的写法,就是在创建函数时使用 yield 关键字,假设我们想输出指定长度的斐波拉契数列,有如下函数:

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        print(b)
        a, b = b, a + b
        n = n + 1
    return 'done'

调用函数如下:

>>> fib(6)
1
1
2
3
5
8
'done'

只需要把函数中的 print 改为 yield,该函数就变成了生成器函数:

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        yield b
        a, b = b, a + b
        n = n + 1
    return 'done'

调用生成器函数就会得到一个生成器,实际上也就是迭代器:

>>> f = fib(6)
>>> f
<generator object fib at 0x104feaaa0>

所以用 for 循环进行迭代可以得到如下结果:

>>> for i in f:
...     print(i)
... 
1
1
2
3
5
8

生成器函数普通函数的执行流程不一样。普通函数是顺序执行,遇到 return 语句或者最后一行函数语句就返回。而变成生成器的函数,在每次调用 next() 的时候执行,遇到 yield 语句返回,再次执行时从上次返回的 yield 语句处继续执行。

最后作个总结:

  • 迭代器一定是可迭代的,但集合数据类型如列表、字典、字符串等是可迭代的但不是迭代器,可以通过 iter() 函数获得一个迭代器对象;
  • 凡是可作用于 for 循环的对象都是可迭代的
  • 凡是可作用于 next() 函数的对象都是迭代器,它们表示一个惰性计算的序列;
  • Python 的 for 循环如果接收到还不是迭代器可迭代的对象,就会调用 iter() 将其变成迭代器,然后不断调用 next() 函数实现迭代过程;
  • 生成器就是可以让我们通过编写函数,自定义得到的迭代器
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值