6、椭圆曲线密码学:原理、操作与应用

椭圆曲线密码学:原理、操作与应用

1. 椭圆曲线密码学(ECC)概述

椭圆曲线密码学(ECC)在实现过程中具有减少传输带宽的优势,并且在实施过程中有多种内部选择:
- 初始选择的有限域;
- 实现有限域计算的方法;
- 椭圆曲线的类型;
- 椭圆群运算的技术;
- 椭圆曲线的规则。

对于定义良好的ECC,主要有两个有限域:
1. 素整数域 (F_p);
2. 二元多项式域 (F_{2^m})。

基于有限域的基本运算,如ECC的点加法和点乘法,这些有限域计算(包括椭圆标量乘法)的快速执行与ECC的性能直接相关。即使为有限域计算选择了最佳方法,通过选择合适的有限域((F_p) 或 (F_{2^m}))和相应的椭圆曲线,仍可提高整体效率。在硬件实现的特定情况下,优先选择有限域 (F_{2^m});当需要特定的素数 (p)(如梅森素数或广义梅森素数)时,优先选择 (F_p)。如果需要更好的标量乘法性能,则应选择能提供更好计算性能的曲线组,如定义在 (F_{2^m}) 上的科布利茨曲线。

2. 有限域
2.1 有限域 (F_p)

若 (p) 表示一个大素数,有限域 (F_p)(称为素域)包含以下数字集合:({0, 1, 2, 3, \ldots, p - 1})。其基本算术运算如下:
- 加法 :对于 (a, b \in F_p),(a + b \pmod{p} = r),其中 (r) 是 (a + b) 除以 (p) 的余数,且 (0 \leq r \leq p - 1),此操作称为模 (p) 加法。 <

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值