运动恢复结构技术
针对影视内容中摄像机运动受限的特点,提出深度引导的稀疏运动恢复结构方法。关键技术包括:
- 双目标优化:联合优化2D重投影误差与深度估计误差,相比传统几何优化方法提升10%-30%性能指标
- 深度估计融合:利用现成深度估计模型生成密集深度图,通过双线性插值获取关键点真实深度
- 初始化优化:在3D场景结构和相机位姿初始化阶段即引入深度信息
系统工作流程:输入视频→关键点检测与跟踪→深度图插值→3D结构重建
跨模态表征学习
改进CLIP框架的局限性,提出渐进式自蒸馏方法:
- 软对齐机制:允许图像与非配对文本建立概率关联,缓解网络爬取数据的噪声问题
- 自蒸馏训练:
- 初始阶段采用标准对比损失
- 逐步增加模型自身预测作为辅助训练目标
- 动态调整正/负样本权重
实验表明该方法在:
- 图像分类任务:部分数据集超越CLIP 30%-90%
- 跨模态检索:图文互检索任务持续优于基线
- 泛化能力:成功识别训练集未包含的彩色玻璃金鱼图案
左:CLIP强制硬对齐 右:本文的概率软对齐框架
技术应用前景
两项技术已应用于:
- 影视后期:精确插入数字对象到实拍视频
- 内容理解:构建通用视觉表征支持分类/检索任务
- 质量保障:为视频流媒体提供底层技术支持
更多精彩内容 请关注我的个人公众号 公众号(办公AI智能小助手)或者 我的个人博客 https://blog.qife122.com/
公众号二维码