开发适应多元偏好的时尚产品供应模型
在线零售商持续面临的核心挑战在于:如何在销售季节开始前,最优选择时尚产品子集并确定采购库存量。从庞大产品目录中筛选待售子集被称为品类优化问题。时尚产品的品类优化与库存规划复杂性源于两方面:既要提前数月预测新产品需求,又需考虑客户在首选缺货时可能转向替代产品。在线环境中,客户与网站的交互方式完全不同于实体店购物模式,这进一步增加了复杂性。
某中心供应链优化技术组织的高级首席科学家指出:"联合处理品类与库存规划是业界公开文献有限且应用解决方案稀缺的难题。"通过某前实习生的创意启发,某机构与哥伦比亚大学的科学家团队针对这一高度复杂问题开发了实用解决方案。
研究成果体现于2021年5月发表的论文《联合处理重尾需求下的品类与库存规划》。该方法通过识别能聚合产品全域需求的产品子集,在平衡预期收益与库存成本的同时,避免因客户替代行为导致收益过度侵蚀。研究还提出了多步骤选择模型,捕捉在线零售环境中具有产品全域庞大和均值需求重尾分布特征的复杂选择过程。
模型核心突破
1. 动态替代挑战
当存在可替代产品时,单个产品的需求实际取决于所提供的产品组合。以三种可可含量不同的巧克力为例(90%、80%、70%),客户首选90%含量产品,但当其缺货时会转向较低含量产品。这种动态替代过程导致每个产品的需求都随现存选择组合而变化。
2. 马尔可夫链选择模型
通过构建替代概率矩阵抽象客户选择过程的复杂性:当首选产品不可用时,客户转向其他产品的概率是多少?这种抽象层允许将任何客户选择模型与品类库存优化算法解耦。即使未来引入更精确描述选择过程的新模型,现有算法仍可适用。
3. 指数级复杂度破解
传统独立需求预测方法在面对可替代产品时失效。当新增第三个产品时,所有三个产品的预测都会因具体添加的产品而改变。可能的子集组合数量呈指数级增长,而本研究通过抽象层有效降低了计算复杂度。
研究局限与展望
该模型突破了以往依赖选择过程结构形式的优化算法局限,使算法不再随选择过程模型的细微调整而失效。这是首次针对实际品类与库存问题的具体探索,为解决更复杂的顺序决策问题奠定了基石。未来工作将继续探索在有限信息环境下(如当前供应商目录)的序列化决策扩展,推动理论成果向实际应用转化。
论文下载
《Joint assortment and inventory planning for heavy tailed demand》
本研究关注在线零售商在销售季节前对N种可替代产品同时进行品类与库存决策的优化问题,重点解决了动态缺货替代带来的算法与建模挑战。
更多精彩内容 请关注我的个人公众号 公众号(办公AI智能小助手)或者 我的个人博客 https://blog.qife122.com/
公众号二维码