
AI
文章平均质量分 83
CodeSlogan
985研究生在读,沉淀中,敬请期待……
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
malloc与cudaMalloc指针传递区别
意味着传递了fpDevice_A指针的指针,那么就可以接收cudaMalloc函数为fpDevice_A所分配的在GPU中的内存空间的首地址。由于是指针的指针,因此在强转时,使用的是。首先在使用上,cudaMalloc要求所需分配内存的变量以参数方式进行传递;malloc为fpHost_A分配内存空间,返回的数据类型是。,那么只能达到修改float类型变量的目的;,意味着取fpDevice_A地址的地址。,代表所分配内存空间的首地址。如果在此处仅仅只传递。原创 2024-08-23 14:34:48 · 361 阅读 · 0 评论 -
rasa框架nlu文件自动生成—基于doccano
Doccano是一款开源的数据标注工具,在本地或服务器上安装运行之后,可直接在web上访问,导入数据进行标注。我们选用其作为图谱问答数据nlu.yml的标注工作。但是从数据标注,再到完整的nlu.yml文件,需要经过一系列的转换过程,因此本文在这项工作上进行总结探索。原创 2023-04-04 16:56:37 · 619 阅读 · 1 评论 -
【AI/NLP】InstructGPT数据标注问题
任何一个训练过程,首当其冲的是获取到每个任务阶段所需要的标注型数据,因此本文将对ChatGPT可能使用到的数据及其标注方法进行介绍。原创 2023-02-16 14:42:43 · 2215 阅读 · 0 评论 -
【AI-NLP】Transformer理论及源码理解
改进了RNN的训练慢的缺点,利用self-attention机制实现并行计算。并且Transformer可以增加到非常深的深度,充分发掘DNN模型的特性,提升模型准确率。同时使用注意力机制更容易关注序列的全局特征,解决了RNN不善处理长距离依赖的问题原创 2023-02-01 11:24:22 · 934 阅读 · 1 评论 -
233搞懂HMM(隐马尔可夫)
有向图模型,主要用于时序数据建模,在语音识别,自然语言处理等领域,以及在知识图谱命名实体识别中的序列标注,有广泛应用。原创 2022-12-03 20:49:15 · 842 阅读 · 1 评论 -
什么才是一个好的特征工程?
“上面的多项式特征是根据它们与目标数据的匹配程度来选择的。考虑这个问题的另一种方法是,一旦我们创建了新特性,我们仍然在使用线性回归。鉴于此,最好的特征将是相对于目标的线性。这可以通过一个例子来更好地理解。”——吴恩达简单理解,就是对X进行处理,使X与Y呈现的函数是线性的。如上图所示,对X所做的特征中,X2X^2X2与Y呈线性关系,最符合对X进行特征工程的目的,可以称为一个好的特征工程。原创 2022-10-18 13:21:25 · 397 阅读 · 0 评论 -
【AI之路】变化的学习率
大多数人在训练模型时遇到训练卡住,无法继续往下进行时,会把它归结为梯度下降过小,已经进入。其实不然,如果在这个时间去计算其梯度会发现,梯度远没有到达足够小的情况。那么是什么样的原因导致了训练无法继续下去呢?本文将揭示可能影响到训练的另一个因素——学习率(learning rate)原创 2021-09-25 15:35:29 · 907 阅读 · 0 评论 -
【AI之路】RNN—序列处理的强者
接着上一篇的CNN,本篇继续学习深度学习中另一个非常重要的模型RNN。如果说卷积神经网络可以有效地处理空间信息, 那么本篇的循环神经网络(recurrent neural network,RNN)则可以更好地处理序列信息。循环神经网络通过引入状态变量存储过去的信息和当前的输入,从而可以确定当前的输出。(过去信息+当前输入=当前输出)........................原创 2022-08-27 17:55:18 · 655 阅读 · 0 评论 -
【AI之路】从卷积到卷积神经网络
本文记录了在跟随李沐老师的动手学深度学习课程中,CNN部分的要点。原创 2022-08-23 19:31:41 · 537 阅读 · 0 评论 -
【AI之路】感知机—神经网络的基本单元
随着层次的增加,计算梯度时会导致多次矩阵乘法。原因:每个层输出的值太大,累加导致爆炸。即dropout,解决模型过拟合问题。两者来自于神经网络的层次。原创 2022-08-23 18:50:06 · 330 阅读 · 0 评论 -
【AI之路】优化算法浅记
几次面试下来,优化算法被问到的频率非常的高,所以在这里简单记录一个常见优化算法的特点。因自己对AI领域的了解还不是很深,只能浅浅地记录一下。原创 2022-08-18 21:44:59 · 917 阅读 · 0 评论 -
论文阅读Knowledge Vault
文章目录题目归属及框架前言概述动机贡献KV组件Local closed world assumption(LCWA)抽取器(Extractors)抽取方法Text documents(TXT)HTML trees (DOM)HTML tables (TBL)Human Annotated pages(ANO)抽取器比较抽取器结果合并基于图的先验概念计算(Priors)路径排序算法Neural network model (MLP)Extractors + Priors思考总结题目归属及框架前言谷原创 2021-11-25 22:00:44 · 1116 阅读 · 0 评论 -
Gaussian Embedding
文章目录1. 前驱知识transE2. 高斯分布3. 结论性概念4. KG2E5. Qualitative Analysis6. Link Prediction损失函数结论Metrichit@10mean rank7. Triplet Classificationevaluation protocolimplementresult参考资料1. 前驱知识transETransE [4] represents a relation as a vector r indicating the semanti原创 2021-10-10 10:03:24 · 1450 阅读 · 0 评论 -
【AI之路】如何开始一个深度学习
一次epoch代表利用所有分好的batches进行训练,每个batch内的计算是基于平行计算,因此,如果batch分的小,那么计算次数就多,计算速度就慢;在没有平行计算时,小的batch自然比大的batch计算的要快,这就好比计算10道数学题和计算100道数学题之间的区别。有平行计算时,由于batch中的资料是同时开始计算,所花费的时间等同于计算1道数学题的时间。《统计学习方法》李航著,第2版,北京:清华大学出版社,2019。在梯度为0的情况下,计算L(),以此判断鞍点与局部最小。原创 2021-09-21 16:25:58 · 766 阅读 · 0 评论