MM配置大全

本文详细介绍了在企业ERP系统中进行物料管理和采购流程的步骤,包括从建立工厂代码、创建采购组织到维护物料管理公司代码、定义价格控制等关键环节,以及在物料类型、采购申请、采购订单、供应商管理、库存地点、仓库编码等方面的实践操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.1 建立工厂代码:Spro>企业结构>定义>后勤-常规>定义,复制,检查工厂 >
1.2 创建采购组织:Spro>企业结构>定义>物料管理>维护采购组织 >
1.3 给公司代码分配采购组织:Spro>企业结构>分配>物料管理>给公司代码分配采购组织
1.4 给工厂分配采购组织:Spro>企业结构>分配>物料管理>给工厂代码分配采购组织
1.5 维护物料管理的公司代码:Spro>后勤-常规>物料主数据>基本设置>维护物料管理的公司代码
1.6 为物料类型定义控制价格:IMG>物料管理>评估和科目设置>为物料类型定义价格控制
1.7 定义物料类型的属性:Spro>后勤-常规>物料主数据>基本设置>物料类型>定义物料类型的属性
1.8 帐号分类参考:IMG>物料管理>评估和科目设置>科目确定>无向导科目确定>定义评估类>帐户分类参考
1.9 评估类:IMG>物料管理>评估和科目设置>科目确定》无向导科目确定》定义评估类》评估类
1.10 OMSK 物料类型/帐户分类参考:IMG>物料管理>评估和科目设置>科目确定》无向导科目确定》定义评估类》物料类型/帐户分类参考
1.11 OMH7 定义采购申请编号范围:Spro>企业结构>定义>物料管理>采购>采购申请>定义编号范围
1.12 定义采购申请凭证类型:Spro>企业结构>定义>物料管理>采购>采购申请》定义凭证类型
1.13 OMH6 定义采购订单号码范围:Spro>企业结构>定义>物料管理>采购>采购定单>定义编号范围
1.14 定义采购订单类型:Spro>企业结构>定义>物料管理>采购>采购定单>定义凭证类型
1.15 创建采购组:Spro>企业结构>物料管理>采购>创建采购组
1.16 定义带有屏幕格式的帐户组(供应商):Spro>财务会计(新)>应收帐目和应付帐目>供应商帐户>主数据>供应商主记录创建准备>定义带有屏幕格式的帐户组(供应商)
1.17 创建供应商帐户编号范围:Spro>财务会计(新)>应收帐目和应付帐目>供应商帐户>主数据>供应商主记录创建准备>创建供应商帐户编号范围
1.18 对供应商帐户分配编号范围:Spro>财务会计(新)>应收帐目和应付帐目>供应商帐户>主数据>供应商主记录创建准备>对供应商帐户组分配编号范围
1.19 指定批次级别并激活状态管理:Spro>企业结构>后勤常规>批次管理>指定批次级别并激活状态管理>批量级别
1.20 批次类的建立:Spro>企业结构>定义>物料管理>采购>采购申请》采购下达过程》含分类的过程》编辑类
1.21 收货日期特性的建立:Spro>企业结构>定义>物料管理>采购>采购申请》采购下达过程》含分类的过程》编辑特性
1.22 设置到期日检查到移动类型:Spro>后勤 - 常规>批次管理>货架寿命截止日期 (SLED)> 设置到期日检查>移动类型
1.23 自动建立库存地点——工厂:IMG>物料管理>库存管理和实际库存>收货>自动建立库存地点>工厂
1.24 自动建立库存地点——移动类型:IMG>物料管理>库存管理和实际库存>收货>自动建立库存地点>移动类型
1.25 定义仓库管理策略类型:IMG>后勤 - 常规>批次管理>批次确定和批次检查>策略类型>定义仓库管理策略类型 前台操作(事务码:mbc1)将策略类型ME02分配给工厂
1.26 定义仓库管理查找过程:IMG>后勤 - 常规>批次管理>批次确定和批次检查>批次查找程序定义>定义仓库管理查找过程
1.27 配置自动记帐科目:Spro>企业结构>定义>物料管理>评估和科目设置》科目确定》无向导的科目确定》配置自动记帐
1.28 定义条件类型:Spro>企业结构>定义>物料管理>采购》条件》定义价格确认流程》定义条件类型
1.29 OMR6 设置容差限制:Spro>企业结构>定义>物料管理>采购》后勤发票校验》发票冻结》设置容差限制
1.30 OMWD 将评估范围群组分组:Spro>企业结构>定义>物料管理>评估和科目设置》无向导的科目确定》将评估范围群组分组
1.31 OMSF 定义物料组:Spro>企业结构>后勤常规>物料主数据》设置关键字段》定义物料组
1.32 设置价格差异的容差限制:Spro>企业结构>定义>物料管理>采购>采购订单>设置价格差异的容差限制
1.33 定义凭证级别的屏幕格式:Spro>企业结构>定义>物料管理>采购>采购订单》定义凭证级别的屏幕格式
1.34 GUNI 检查计量单位:IMG>SAP NETWEAVER>GENERAL SETTINGS>检查计量单位>计量单位
1.35 GUNI 检查计量单位的ISO码:IMG>SAP NETWEAVER》GENERAL SETTINGS》检查计量单位》ISO码
1.36 MMNR 定义每个物料类型的号码范围:IMG>后勤 - 常规>物料主记录>基本设置>物料类型>定义每个物料类型的号码范围
1.37 OX09 维护仓储地点:Spro>企业结构>定义>物料管理>维护仓储地点
1.38 OMJN 货物移动初始化/抬头屏幕的字段选择:Spro>物料管理>库存管理和实际库存>货物移动初始化/抬头屏幕的字段选择
1.39 OMJX MIGO 的字段选择:Spro>物料管理>库存管理和实际库存> Enjoy 事务设置>货物移动设置 (MIGO) >MIGO 的字段选择
1.40 OMBS 控制原因:Spro>物料管理>库存管理和实际库存>移动类型>记录货物移动原因>控制原因
1.41 OMBS 移动原因:Spro>物料管理>库存管理和实际库存>移动类型>记录货物移动原因>移动原因
1.42 定义仓库编码:Spro>企业结构>定义>后勤执行>定义, 复制, 删除, 检查仓库编码
1.43 给工厂/存储地点分配仓库编码:Spro>企业结构>分配>后勤执行>给工厂/存储地点分配仓库编码
1.44 定义仓库编号的控制参数:Spro>后勤执行>仓库管理>主数据>定义仓库编号的控制参数
1.45 OMLW 定义编号范围:Spro>后勤执行>仓库管理>主数据>定义编号范围
1.46 定义存储类型:Spro>后勤执行>仓库管理>主数据>定义存储类型
1.47 定义存储区:Spro>后勤执行>仓库管理>主数据>定义存储区
1.48 定义仓位类型:Spro>后勤执行>仓库管理>主数据>仓位>定义仓位类型
1.49 定义存储单位类型:Spro>后勤执行>仓库管理>主数据>物料>定义存储单位类型
1.50 OMNF 定义需求类型:Spro>后勤执行>仓库管理>作业>转帐>定义需求类型
1.51 定义转账移动类型:Spro>后勤执行>仓库管理>作业>转帐>定义移动类型[@more@]

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/8676220/viewspace-1057933/,如需转载,请注明出处,否则将追究法律责任。

转载于:http://blog.itpub.net/8676220/viewspace-1057933/

<think>嗯,用户是一位生物学博士,想要转行成为技术人员,需要职业规划的建议。这个需求很明确,但背后可能隐藏着更深层的焦虑——毕竟从学术转向工业界是个重大决定,用户可能对自身技能是否匹配、行业前景如何存在疑虑。 从引用内容看,美国生物博士转行比例高85%-93%,说明这是非常普遍的路径。用户的核心诉求应该是如何高效完成转型,重点在于技能迁移和行业选择。特别要注意的是,用户提到"合格的技术人员",这个表述暗示ta更看重实操能力而非管理路线。 技术转行最关键的三个维度是:技能缺口填补、行业选择、求职策略。生物学博士的优势在于科研方法论和复杂问题处理能力,但需要补充编程、工程化思维和商业意识。引用[2]提到数据分析技能和论文发表记录对转行有帮助,这点值得强调。 生物医药领域的技术岗位特别适合作为切入点,因为能最大限度复用专业知识。比如生物信息学工程师岗位,既需要懂测序原理又要会处理NGS数据,博士期间的分子生物学知识直接转化为竞争优势。引用[4]中数据分析师转产品经理的案例也说明,技术岗位常是向商业角色过渡的跳板。 用户可能需要警惕的误区是"从零开始"思维。其实冷冻电镜的图像分析经验可以迁移到计算机视觉项目,CRISPR实验设计能力对应着产品需求分析能力——关键要学会提炼可迁移技能。建议用STAR法则重新梳理博士期间的科研项目,挖掘出项目管理、跨团队协作等软技能。 最后要注意求职策略。引用[3]提到"掌握热门技术对职业发展有益",但更关键的是针对性学习。比如应聘医疗AI公司应该优先掌握Python和PyTorch,而不是泛泛地学编程。内推效率远高于海投,建议用户优先联系校友络。</think>基于你的生物学博士背景和转行技术领域的目标,以下是系统化的职业规划路径,结合技能要求、发展前景和行动建议: --- ### **一、核心技能迁移与补充路径** 1. **基础技术栈** - **编程语言**:优先掌握`Python`(数据分析/生物信息)或`Java/Scala`(系统开发),辅以`SQL`数据库操作 *示例学习路径:* ```python # 生物数据清洗示例 import pandas as pd gene_data = pd.read_csv("genome_expression.csv") cleaned_data = gene_data.dropna().apply(lambda x: (x - x.mean())/x.std()) # 标准化处理 ``` - **数学基础**:重点补充统计学(假设检验、回归分析)和线性代数(机器学习前置知识) *关键公式:*$$P(X|Y) = \frac{P(Y|X)P(X)}{P(Y)} \quad \text{(贝叶斯定理)}$$ 2. **领域专用技能** | 方向 | 技能组合 | 生物博士优势 | |---------------|------------------------------|---------------------------| | 生物信息 | NGS数据处理/GATK流程 | 基因组学知识复用 | | 医疗AI | 医学影像分析/电子病历NLP | 病理机制理解 | | 医药大数据 | 临床试验数据建模/Real-World Evidence | 科研方法论迁移 | 3. **工程化能力** - 版本控制(Git) - 云服务(AWS/Azure生物计算服务) - 容器化(Docker封装分析流程) --- ### **二、职业转型三条黄金赛道** 1. **生物信息工程师** - **典型职责**:搭建生信分析管道,开发算法工具 - **薪资范围**:国内30-60/(资深岗位可) - **成功案例**:华大基因70%技术骨干拥有生命科学博士学位[^1] 2. **医疗AI研究员** - **需求爆发点**:医学影像AI市场增速25%(2023 Frost & Sullivan数据) - **核心技能**: $$ \text{模型效果} = \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}} \quad \text{(F1 Score)} $$ 3. **医药数据分析师** - **工作场景**: ```mermaid graph LR A[临床试验设计] --> B[EDC系统管理] B --> C[统计建模
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值