先创建实验数据
create table t(
query_time date,
ts float
);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',90.04);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',89.24);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',76.08);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',12.66);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',35.08);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',37.42);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',81.86);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',97.03);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',39.57);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',6.75);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',15.05);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',55);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',29.83);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',84.17);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',31.35);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',4.24);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',27.17);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',23.14);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',34.16);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',1.38);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',4.42);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',17.97);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',76.6);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',29.08);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',15.58);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',90.68);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',6.67);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',61.28);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',86.42);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',48.24);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',81.94);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',64.99);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',79.13);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',0.66);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',65.93);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',27.65);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',40.46);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',19.36);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',75.4);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',18.94);

t是查询日志表.
表有两列数据,其中一列是查询时间,另外一列是 查询的时间.
查询每天 前71%,81%,91%的记录的时间.
其中的百分比是动态修改的,配置信息存放在表里.使用如下SQL模拟.

其中v是百分比,seq是排序显示的优先级.
求解SQL如下:

核心思路:
1.按照日期分组,以查询时间排序,在分组内加行号.
2.分组内行号除以每天查询的总数,可以得出本记录在全体中的百分比
3.用配置表中配置的百分比减去第二步算出的百分比,大于0的最小记录就是我们要的结果.
这个计算过程再次使用了分组内排序加行号的操作.
性能分析
在MySQL数据库下,这应该是这种需求性能最好的解法了.
对于符合条件的记录进行了两遍扫描.
create table t(
query_time date,
ts float
);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',90.04);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',89.24);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',76.08);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',12.66);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',35.08);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',37.42);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',81.86);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',97.03);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',39.57);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',6.75);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',15.05);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',55);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',29.83);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',84.17);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',31.35);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',4.24);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',27.17);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',23.14);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',34.16);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-29',1.38);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',4.42);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',17.97);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',76.6);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',29.08);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',15.58);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',90.68);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',6.67);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',61.28);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',86.42);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',48.24);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',81.94);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',64.99);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',79.13);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',0.66);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',65.93);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',27.65);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',40.46);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',19.36);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',75.4);
INSERT INTO `t` (`query_time`,`ts`) VALUES ('2018-06-30',18.94);

表有两列数据,其中一列是查询时间,另外一列是 查询的时间.
查询每天 前71%,81%,91%的记录的时间.
其中的百分比是动态修改的,配置信息存放在表里.使用如下SQL模拟.

其中v是百分比,seq是排序显示的优先级.
求解SQL如下:
-
select query_time,v,ts
-
from (
-
select t6.query_time,t6.ts,v,seq,
-
case when @gid=concat(seq,'#',query_time) then @rn:=@rn+1 when @gid:=concat(seq,'#',query_time) then @rn:=1 end s
-
from (
-
select query_time,ts,rn,percent,v,v-percent d,seq from (
-
select t2.query_time,ts,rn,rn/total percent from (
-
select query_time,ts,
-
case when @gid=query_time then @rn:=@rn+1 when @gid:=query_time then @rn:=1 end rn
-
from (
-
select * from t ,(select @gid:='',@rn:=0) vars order by query_time,ts
-
) t1
-
) t2 inner join (
-
select query_time,count(*) total from t group by query_time
-
) t3 on(t2.query_time=t3.query_time)
-
) t4 ,
-
(select 0.71 v,1 seq union all select 0.81,2 union all select 0.91,3) t5
-
) t6 where d>=0 order by query_time,v,d
- ) t7 where s=1 order by query_time,seq ;

核心思路:
1.按照日期分组,以查询时间排序,在分组内加行号.
2.分组内行号除以每天查询的总数,可以得出本记录在全体中的百分比
3.用配置表中配置的百分比减去第二步算出的百分比,大于0的最小记录就是我们要的结果.
这个计算过程再次使用了分组内排序加行号的操作.
性能分析
在MySQL数据库下,这应该是这种需求性能最好的解法了.
对于符合条件的记录进行了两遍扫描.
来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/29254281/viewspace-2157111/,如需转载,请注明出处,否则将追究法律责任。
转载于:http://blog.itpub.net/29254281/viewspace-2157111/