
机器学习笔记
文章平均质量分 83
Turbo正则
编程笔记
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
机器学习入门 | 训练、推理与其他机器学习活动(预处理、测试与评估)
这是首个大规模实际应用的 商业领域的多方计算(MPC)。经定制调参的噪声分布能隐藏个体在数据集中的存在状态,使攻击者无法区分包含特定个体的分析结果与替换个体数据的分析结果。此类情况下,能够截获数据传输的恶意黑客 运行该模型的计算机平台会等待数据被解密后,再交由分析模型进行处理,随后窃取有价值的明文信息。尽管数据规模如此庞大,但可用于模型训练的现成数据——尤其是高质量标注数据——仍是珍贵且稀缺的资源,研究人员往往难以获取。由于训练模型的质量本质上与训练数据的质量相关,应尽可能减少训练数据中的标注错误。原创 2025-06-26 09:11:07 · 435 阅读 · 0 评论 -
入门 | 自学人工智能专业基础路线以及书籍资料推荐
自学人工智能专业需要极强的跨学科整合能力,核心在于数学基础 + 编程能力 + 算法理论 + 工程实践 + 领域知识的结合。数学是根基:线性代数、概率统计、微积分、优化论是理解算法的语言。编程是工具:Python 是绝对主流,必须熟练掌握其数据科学生态(NumPy, Pandas, Matplotlib, Scikit-learn)。从经典到前沿:先掌握机器学习基础,再深入深度学习,最后探索细分领域(CV/NLP/RL等)。原创 2025-06-24 12:32:26 · 920 阅读 · 0 评论 -
机器学习入门 | 机器学习方法与模型概述
由于无法用简单的线性方程来模拟每一个事件,因此模型的方程及其参数数量应根据输入数据和建模者可用的资源来选择,以提供足够准确的结果。在这种情况下,行动的结果(或者更准确地说,更新后的输入,也称为特征向量)可以反馈给模型,并用于改变模型参数以进一步朝着成功的标准进行优化。例如,当试图预测一名学生在即将到来的考试中的预期成绩时,人们可能会在输入特征向量中包含该学生的以往成绩、为考试所花的时间、考试前一晚的睡眠时间以及该学生的智商分数。同样,模型的参数(已学习的参数和超参数)的数量(θ)也可能不足。原创 2025-06-13 16:15:11 · 340 阅读 · 0 评论 -
代码总崩?6个鲁棒性实战技巧,告别脆弱程序
鲁棒性(Robustness)是系统、算法或模型在下仍能保持的能力。它强调对意外情况的抗干扰能力,是衡量可靠性和适应性的重要指标。英文“Robustness”的音译,意为“健壮性”。系统不因部分错误、噪声或极端条件而崩溃或失效。广泛存在于计算机科学(软件/算法)、控制系统、统计学、人工智能、生物学等领域。原创 2025-04-14 13:30:06 · 1005 阅读 · 0 评论 -
Huber Loss:线性回归的“抗干扰神器”
Huber Loss 是均方误差(MSE)和平均绝对误差(MAE)的混合体,在误差较小时使用MSE(保证平滑可导),在误差较大时切换为MAE(减少异常值影响)。原创 2025-04-10 20:04:59 · 962 阅读 · 0 评论 -
机器学习入门,AI预测能力“照妖镜”——均方误差
当AI预测房价、股票甚至天气时,如何判断它的预测准不准?一个叫“均方误差”(MSE)的数学指标,正是科学家们衡量模型预测能力的“照妖镜”!它不仅能放大误差,让不靠谱的预测无所遁形,还能指导AI自我优化。今天,我们就用3分钟和Python代码,带你彻底搞懂这个影响AI决策的关键指标!原创 2025-04-01 13:32:05 · 691 阅读 · 0 评论 -
从股价预测到机器学习,快速搞懂回归分析的核心逻辑
专注于python编程 + 机器学习 ,每周分享py办公自动化、数据分析、人工智能学习笔记。关注我,让AI成为你的职场利器!回归(regression)是监督学习的另一个重要问题。回归用于预测输入变量(自变量)和输出变量(因变量)之间的关系,特别是当输入变量的值发生变化时,输出变量的值随之发生的变化。回归模型正是表示从输入变量到输出变量之间映射的函数。原创 2025-03-22 17:58:16 · 909 阅读 · 0 评论 -
机器学习入门 | 找规律神器,最小二乘法及应用案例
生活中,你手机上未来几天的天气预报,经济学家预测的物价趋势,甚至健身APP上预测的你下个月的体重,这些看似“未卜先知”的能力,其实都藏着一个数学秘密:最小二乘法。原创 2025-03-27 19:55:55 · 749 阅读 · 0 评论 -
机器学习入门,线性回归的数学原理与案例
线性回归通过一个或多个自变量(特征)与因变量(目标)之间的线性关系,建立预测模型。其数学表达式为:其中,y 是因变量,x 是自变量,β0 是截距,βi 是特征权重,∊ 表示误差项。原创 2025-03-19 13:46:09 · 645 阅读 · 0 评论