MIT-1806线性代数笔记 01方程组的几何解释

文章介绍了线性代数的基础概念,包括线性组合、线性方程组的行图像和列图像,以及矩阵乘以向量的方法。讨论了二维和三维空间中线性方程组的几何表示,并指出非奇异矩阵意味着线性无关的向量可以覆盖整个空间。此外,提到了Schwarz不等式和计算向量夹角的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自留,主要是MIT1806课程的学习笔记,其中也包含了吉尔伯特教授所撰写的Introduction to Linear Algebra的阅读笔记,笔记中的一部分内容参考了某乎三少爷的键(搬的图,侵删)。才疏学浅,不当的地方还望指正包涵。而且由于课本跟课程并非一一对应所以可能会串^_^
在这一节中更重要的是理解其中的概念,其中线性组合是贯穿整个课程的重要概念。对于向量v⃗和w⃗\vec v和\vec wv w ,给定数字c和dc和dcd,我们乘以数并相加得到cv⃗+dw⃗c\vec v+d\vec wcv +dw ,则称其为线性组合,本节重要的理念是从2,3维空间拓展到n维空间。

线性方程组的几何图像

行图像

对于方程组
{ 2x−y=0−x+2y=3 \begin{cases}2x-y=0\\ -x+2y=3 \\ \end{cases} { 2xy=0x+2y=3
我们可以画出两个等式的图像,为两条直线,易得方程组的解是两条线的交点的坐标,即x=1,y=2x=1,y=2x=1,y=2请添加图片描述

列图像

我们将系数矩阵写成向量的线性组合x[2−1]+y[−12]=[03]x\left[\begin{matrix}2\\-1\\\end{matrix}\right]+y\left[\begin{matrix}-1\\2\\\end{matrix}\right]=\left[\begin{matrix}0\\3\\\end{matrix}\right]x[21]+y[12]=[03]
在这里插入图片描述

可以看到当蓝色向量加两倍的红色向量就得到了右侧向量,所以解为x=1,y=2x=1,y=2x=1,y=2
那么将n从2变成3会是怎样呢?
{ 2x−y+0z=0−x+2y−z=−10x−3y+4z=4 \begin{cases}2x-y+0z=0\\ -x+2y-z=-1 \\ 0x-3y+4z=4 \end{cases} 2xy+0z=0x+2yz=10x3y+4z=4
对于这个方程画出行图像,是三个平面相交与一点,图像也比二维难画了,但作为列图像,我们得到
x[2−10]+y[−12−3]+z[0−14]=[0−14] x\left[\begin{matrix}2\\-1\\0\\\end{matrix}\right] +y\left[\begin{matrix}-1\\2\\-3\\ \end{matrix}\right] +z\left[\begin{matrix}0\\-1\\4\\ \end{matrix}\right] =\left[\begin{matrix}0\\-1\\4\\ \end{matrix}\right] x 210 +y 123 +z 014 = 014

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值