自留,主要是MIT1806课程的学习笔记,其中也包含了吉尔伯特教授所撰写的Introduction to Linear Algebra的阅读笔记,笔记中的一部分内容参考了某乎三少爷的键(搬的图,侵删)。才疏学浅,不当的地方还望指正包涵。而且由于课本跟课程并非一一对应所以可能会串^_^
在这一节中更重要的是理解其中的概念,其中线性组合是贯穿整个课程的重要概念。对于向量v⃗和w⃗\vec v和\vec wv和w,给定数字c和dc和dc和d,我们乘以数并相加得到cv⃗+dw⃗c\vec v+d\vec wcv+dw,则称其为线性组合,本节重要的理念是从2,3维空间拓展到n维空间。
线性方程组的几何图像
行图像
对于方程组
{
2x−y=0−x+2y=3 \begin{cases}2x-y=0\\ -x+2y=3 \\ \end{cases} {
2x−y=0−x+2y=3
我们可以画出两个等式的图像,为两条直线,易得方程组的解是两条线的交点的坐标,即x=1,y=2x=1,y=2x=1,y=2
列图像
我们将系数矩阵写成向量的线性组合x[2−1]+y[−12]=[03]x\left[\begin{matrix}2\\-1\\\end{matrix}\right]+y\left[\begin{matrix}-1\\2\\\end{matrix}\right]=\left[\begin{matrix}0\\3\\\end{matrix}\right]x[2−1]+y[−12]=[03]
可以看到当蓝色向量加两倍的红色向量就得到了右侧向量,所以解为x=1,y=2x=1,y=2x=1,y=2
那么将n从2变成3会是怎样呢?
{
2x−y+0z=0−x+2y−z=−10x−3y+4z=4 \begin{cases}2x-y+0z=0\\ -x+2y-z=-1 \\ 0x-3y+4z=4 \end{cases} ⎩
⎨
⎧2x−y+0z=0−x+2y−z=−10x−3y+4z=4
对于这个方程画出行图像,是三个平面相交与一点,图像也比二维难画了,但作为列图像,我们得到
x[2−10]+y[−12−3]+z[0−14]=[0−14] x\left[\begin{matrix}2\\-1\\0\\\end{matrix}\right] +y\left[\begin{matrix}-1\\2\\-3\\ \end{matrix}\right] +z\left[\begin{matrix}0\\-1\\4\\ \end{matrix}\right] =\left[\begin{matrix}0\\-1\\4\\ \end{matrix}\right] x
2−10
+y
−12−3
+z
0−14
=
0−14