- 博客(537)
- 收藏
- 关注
原创 Apache ShardingSphere 读写分离功能的限制与注意事项
ShardingSphere读写分离功能的主要限制包括:1)主从数据同步延迟导致读写不一致,必须通过事务内读主库或Hint机制处理;2)跨主从库关联查询存在限制,建议避免或强制走主库;3)要求主从库Schema严格一致;4)不支持单库内部读写分离;5)与分布式事务结合使用时存在额外复杂性。开发者需重点关注主从延迟问题,合理设计业务逻辑,并做好监控。这些限制需要在系统设计和开发过程中主动规避和处理。
2025-07-08 00:22:50
88
原创 Apache ShardingSphere 的读写分离功能核心概念详解
Apache ShardingSphere的读写分离功能通过主库(唯一写入点)和从库(多个读取点)提升数据库性能。核心机制包括:逻辑数据源透明路由SQL请求;负载均衡策略分配读请求;主从延迟问题解决方案(事务内强制主库读、Hint管理器)。使用时需注意主库写入与从库读取的数据一致性,合理选择负载均衡策略。该功能对应用透明,显著降低代码复杂度,同时提供灵活的读写控制能力。建议结合实践配置和测试深入理解其工作机制。
2025-07-08 00:21:48
85
原创 Apache ShardingSphere 的读写分离功能
Apache ShardingSphere的读写分离功能通过将写操作路由至主库、读操作分散到从库,有效提升系统读性能与整体吞吐量。该功能包含主库、从库和逻辑数据源三个核心组件,支持轮询、随机等多种负载均衡策略。实现原理包括SQL解析路由、执行与结果归并,其中事务内读操作默认路由至主库以保证一致性,还提供Hint机制强制主库查询。优势在于提升读性能、增强可用性并保持对应用透明,但需注意主从延迟、事务一致性等关键问题。配置支持Java代码、YAML和Spring Boot等方式,建议结合实践场景深入理解延迟影响
2025-07-08 00:20:02
344
原创 ShardingSphere 事务模块的附录内容
ShardingSphere事务模块附录提供关键补充信息,主要包括: XA事务恢复命令 - 详细说明MySQL、PostgreSQL等数据库查询和处理悬挂事务的SQL命令,强调操作风险及日志存储重要性。 Seata AT集成配置 - 给出完整配置示例,重点包括事务组映射、TC集群地址、必须关闭的数据源代理等关键参数。 BASE模式实现 - 提供事务日志表DDL范例和事件监听器接口实现示例,展示如何将事务日志发布到消息队列。 附录内容聚焦实际应用中的关键操作和配置细节,为事务管理提供实用参考。
2025-07-08 00:19:44
220
原创 ShardingSphere 事务功能的限制
ShardingSphere事务功能存在多方面限制,主要包括:1)通用限制如不支持跨数据库类型事务、存储过程事务和Savepoint;2)XA事务受限于底层Narayana/Atomikos实现的资源管理问题;3)Seata AT模式的全局锁竞争、读未提交隔离级别和UNDO LOG依赖风险;4)BASE模式的最终一致性和补偿逻辑实现复杂度。这些限制源于分布式事务的固有复杂性、数据库差异及架构设计,需根据业务场景权衡选择合适方案,并针对性地设计容错机制和监控体系。
2025-07-08 00:17:42
446
原创 ShardingSphere 事务管理的核心概念
本文解析了ShardingSphere事务管理的核心概念体系,包括本地事务、全局事务、分支事务三大基础单元,以及事务管理器、资源管理器两大核心组件。重点阐明了事务上下文和挂起事务的运行机制,揭示了分布式事务在逻辑层与物理层的协同原理。通过剖析各组件职责与交互关系,展现了ShardingSphere如何通过分层架构实现ACID特性,为分布式场景提供标准化事务管理能力。该理论框架是理解ShardingSphere实现XA、Seata等事务模式的基础。
2025-07-08 00:17:19
575
原创 ShardingSphere 的事务管理
ShardingSphere 提供多事务类型支持,核心包括:1) Seata AT柔性事务(低侵入最终一致,需部署Seata TC);2) 本地事务表(利用数据库本地事务记录日志,异步实现最终一致);3) XA事务(标准两阶段提交,强一致但性能较差)。选择需权衡一致性、性能与复杂度:Seata AT适合多数场景,XA适用于强一致需求,本地事务表适合无中间件环境。
2025-07-08 00:16:57
518
原创 ShardingSphere 分片附录详解
ShardingSphere 分片核心功能指南 本指南系统化总结了ShardingSphere分片功能的核心内容,包含以下要点: 分片算法表达式语法:详细说明了行表达式语法、时间函数扩展和复合表达式用法,提供Groovy语法示例。 分片配置项全集:列出分片规则配置结构,包括分库/表策略、算法参数表和分布式序列配置,附带YAML示例和参数说明表。 Hint强制路由:介绍SQL Hint语法和Java API两种实现方式,展示如何指定分片值。 弹性伸缩操作:提供DistSQL扩容语法和迁移状态监控命令,包含数据
2025-07-08 00:15:39
514
原创 ShardingSphere 分片限制深度解析与解决方案
ShardingSphere 分片限制与解决方案摘要 ShardingSphere作为分布式数据库中间件存在SQL兼容性、事务性、分片策略和性能等方面的限制。SQL支持方面,DDL语句需包含分片键,DML操作如跨分片更新和多表关联受限,查询语句需注意分片键与聚合操作的内存消耗。事务层面,本地事务完全支持,而分布式事务需根据业务选择XA、Seata等方案。分片策略要求分片键不可变,分片算法选择需考虑扩容和查询需求。性能优化需控制分片数量,避免大数据量归并,合理配置连接池。解决方案包括:SQL改写、分布式事务框
2025-07-08 00:15:10
460
原创 Apache ShardingSphere 内置的分片算法( 自动分片算法、标准分片算法、复合分片算法和 Hint 分片算法)
Apache ShardingSphere 的分片算法可分为四大类型: 自动分片算法:主键自动路由,无需指定分片键,适合主键驱动的业务场景,配置简单但灵活性较低。 标准分片算法:单分片键精确/范围路由,推荐使用 INLINE 或 INTERVAL 算法,适用于大多数分片需求。 复合分片算法:支持多分片键组合路由,需自定义实现,灵活性高但开发复杂。 Hint 分片算法:强制编程指定路由,适用于特殊操作或无分片键查询,侵入性强。 选型建议:优先标准分片,时间驱动用自动分片,复杂场景用复合分片,Hint 作为最后
2025-07-08 00:14:41
330
原创 ShardingSphere-JDBC 分片策略 详解
ShardingSphere-JDBC的分片策略由分片键和分片算法组成,用于决定数据如何路由到不同库表。分片键是数据分片的关键字段(如user_id、order_id等),应选择分布均匀且高频查询的字段。分片算法分为三类:标准分片算法(处理精确查询)、范围分片算法(处理BETWEEN等范围查询)和复合分片算法(处理多分片键场景)。配置上分为数据库分片策略(路由到不同库)和表分片策略(路由到同库不同表),均遵循"分片策略=分片键+分片算法"的公式。此外,绑定表(相同分片规则的表)和广播表(
2025-07-08 00:13:39
533
原创 ShardingSphere 分片核心概念
ShardingSphere分片机制解析 ShardingSphere通过逻辑表与真实表的映射关系实现分布式数据库透明化访问,其核心分片概念包括: 逻辑表作为应用层抽象 真实表对应物理存储 数据节点定义最小存储单元 分片键决定数据路由 分片算法实现精确/范围路由计算 分片策略配置多维分片规则 高级特性包含绑定表避免JOIN笛卡尔积、广播表同步基础数据,以及弹性分片扩容机制。生产实践中需遵循分片键离散性、稳定性等设计原则,合理选择分片算法类型,并按照扩容公式规划分片数量。系统提供SQL解析路由和诊断工具保障分
2025-07-08 00:10:05
779
原创 ShardingSphere 分片核心特性
ShardingSphere分片核心特性解析 摘要:ShardingSphere作为分布式数据库中间件,其分片功能通过智能路由和计算下推实现海量数据管理。核心分片体系包含逻辑表、真实表、数据节点等概念,支持多维分片策略(垂直/水平分片)和多种分片算法(精确/范围/复合分片)。高级特性包括绑定表避免笛卡尔积、广播表同步维度数据、冷热数据分离和动态扩容能力。生产实践中需注意分片键设计原则(高基数性、业务相关、写均匀)和容量规划公式。系统提供SQL兼容性矩阵和故障诊断工具(路由追踪、元数据查询、性能监控),建议单
2025-07-08 00:09:14
462
原创 ShardingSphere-Proxy 快速入门
ShardingSphere-Proxy 是一个透明的数据库网关,提供与原生数据库兼容的协议,支持多语言应用接入。部署流程包括:1)环境准备(Java 8+、MySQL/PostgreSQL);2)配置全局规则和数据分片策略;3)启动服务并连接。通过 YAML 文件定义分库分表规则,支持动态配置更新和分布式主键生成。生产建议采用高可用部署模式,集成配置中心,并监控性能指标。常见问题包括连接失败、路由异常等,可通过日志分析和配置检查解决。Proxy 适用于生产环境,与 JDBC 驱动搭配使用,支持零停机迁移和
2025-07-08 00:08:19
520
原创 ShardingSphere-JDBC 快速入门
摘要: ShardingSphere-JDBC作为轻量级Java驱动,通过YAML配置快速实现分库分表。核心步骤包括: 引入依赖(ShardingSphere-JDBC+HikariCP); 配置数据源及分片规则(分库策略、分表策略、雪花ID生成); 代码集成,通过标准JDBC操作逻辑表,SQL自动路由至物理节点; 支持调试日志、事务管理及SpringBoot集成。 适用于需高性能分片的Java应用,无需代理层,配置简洁高效。注意分片键限制与连接池优化。
2025-07-08 00:07:55
186
原创 联合索引 && 覆盖索引 && 最左前缀原则 && 索引下推 && 回表
数据库索引核心概念解析:1)联合索引在多个列上建立B+树结构,按列顺序存储键值;2)覆盖索引可直接提供查询数据,避免回表操作;3)最左前缀原则要求查询必须从索引左侧列开始使用;4)索引下推在存储引擎层提前过滤数据,减少回表次数;5)回表是通过二级索引查找主键后访问聚簇索引的过程。这些技术相互关联(联合索引是基础,覆盖索引和索引下推可减少回表),合理设计索引(高频列靠左、包含查询字段)能显著提升查询性能。
2025-07-07 00:24:57
177
原创 ShardingSphere-JDBC 详解
Apache ShardingSphere-JDBC 是轻量级 Java 框架,提供分库分表、读写分离、数据加密等分布式数据库增强功能。核心能力包括:灵活的分片算法(支持标准、范围及复合分片)、读写分离负载均衡、多种分布式事务方案(XA/SeAT/Saga)、透明化数据加密和影子库压测支持。其工作流程涵盖SQL解析、路由优化、改写执行和结果归并。作为嵌入式JDBC扩展,它具有无中心化、低侵入等优势,适用于大数据量、高并发及快速增长的Java应用场景。相比ShardingSphere-Proxy,JDBC方案
2025-07-07 00:24:26
574
原创 mysql 主从复制原理、实现方式 以及 主从同步延迟的处理方式
MySQL主从复制是一种异步的数据同步机制,通过主库(Master)将数据变更记录到二进制日志(binlog),从库(Slave)通过三个核心线程(Binlog Dump、I/O、SQL)实现数据同步。复制方式分为基于二进制日志位置和基于GTID两种,后者能自动跟踪事务位置。主从复制模式包括异步复制(默认)、半同步复制和组复制(MGR),各有优缺点。主从延迟问题可通过并行复制、分库分表等方式优化。监控命令SHOW SLAVE STATUS可查看复制状态,常见故障可通过调整配置或跳过事务处理。
2025-07-07 00:23:03
731
原创 MySQL数据库读写分离 以及 实现方式
MySQL读写分离是提升数据库性能和可用性的关键架构,通过将写操作(INSERT/UPDATE/DELETE)路由到主库,读操作(SELECT)分发到从库来实现负载均衡。核心实现方式包括:应用层代码实现(简单但侵入性强)、数据库中间件代理(推荐使用ProxySQL等专业工具)、驱动层实现(如ShardingSphere-JDBC)以及基于DNS的方案(逐渐被淘汰)。关键挑战在于主从延迟和事务处理,可通过强制读主库、GTID等待或半同步复制解决。方案选型需根据项目规模决定,中小项目适合应用层实现,大型系统推荐
2025-07-07 00:22:25
501
原创 MySQL事务的四大特性 以及 ACID 实现机制
MySQL事务的四大特性(ACID)是数据库可靠性的核心保障。原子性(Atomicity)通过Undo Log实现全成功或全失败;一致性(Consistency)由业务规则和数据库约束共同维护;隔离性(Isolation)通过MVCC和锁机制控制并发访问;持久性(Durability)依赖Redo Log确保数据永久保存。MySQL默认采用REPEATABLE READ隔离级别平衡性能与一致性,通过间隙锁避免幻读。实践建议包括合理配置日志参数、避免长事务等,最终目标是通过ACID机制实现数据一致性。
2025-07-07 00:21:53
727
原创 MySQL 中的锁分类
MySQL锁机制是保障数据一致性和并发控制的核心,主要包括全局锁、表级锁和行级锁。全局锁用于全库备份但会阻塞所有写操作;表级锁含表锁、元数据锁和意向锁,其中长事务可能阻塞DDL操作;行级锁由InnoDB实现,含记录锁、间隙锁、临键锁等,需注意索引失效会退化为表锁。锁按兼容性分为共享锁和排他锁,死锁检测可通过等待图实现。最佳实践包括优先使用行锁、避免长事务、监控锁等待及谨慎执行DDL。间隙锁仅在REPEATABLE READ级别有效,无索引更新会导致全表锁。
2025-07-07 00:21:22
571
原创 聚簇索引(Clustered Index)vs 非聚簇索引(Non-clustered Index)
摘要:聚簇索引与非聚簇索引的核心区别在于叶子节点存储内容。聚簇索引存储实际数据行,数据物理顺序与索引一致,每表仅限一个,适合主键和范围查询但插入较慢;非聚簇索引存储数据指针,不影响物理顺序,每表可建多个,查询可能需回表但插入更快。聚簇索引更新代价高,非聚簇索引更灵活。设计时应将主键设为聚簇索引,为常用查询列建非聚簇索引,考虑覆盖索引避免回表。不同数据库引擎实现有差异,理解两者区别对优化性能至关重要。(150字)
2025-07-07 00:20:53
606
原创 B+ 树 VS B 树
B+树和B树是两种重要的多路平衡搜索树,主要用于数据库和文件系统索引。B+树仅叶子节点存储数据,非叶节点为纯索引,叶子节点通过双向链表连接,这使得它比B树具有更低的树高、更高的空间利用率和更高效的范围查询能力。B+树的这些特性使其在数据库索引中占据主导地位,尤其适合磁盘I/O密集型操作和大规模数据扫描。而B树由于数据分散存储,在内存数据库或特定写密集型场景中可能略有优势。实际测试显示,B+树在范围查询和全表扫描上的性能远超B树,成为现代数据库系统的首选索引结构。
2025-07-07 00:19:31
420
原创 mysql 创建索引 注意事项
在MySQL中,合理创建索引是优化查询性能的关键,但需注意以下几点:1.明确目标查询,只为高频关键查询创建;2.遵循最左前缀原则设计组合索引;3.优先使用覆盖索引避免回表;4.控制索引数量避免冗余;5.选择区分度高的列。创建时需注意前缀索引优化、排序分组匹配、NULL值处理等问题,避免函数导致索引失效。生产环境应采用Online DDL、避开高峰期操作。后期要定期监控使用情况、更新统计信息并处理碎片化。最佳实践是保持"少而精"原则,基于实际负载决策,平衡读写性能。
2025-07-07 00:17:57
637
原创 MySQL 索引失效的 10 大原因及深度解析
MySQL索引失效是数据库性能优化的关键问题。本文总结了10大常见原因:违反最左前缀原则、对索引列进行计算/函数操作、使用OR连接非索引列、模糊查询以%开头、优化器成本估算放弃索引、负向查询、JOIN字段类型不匹配、索引合并效率低、数据分布不均以及索引物理损坏。每种情况都给出具体示例和解决方案,如重写查询条件、调整索引顺序、强制使用索引提示等。最后强调通过EXPLAIN分析执行计划来诊断问题,重点关注type、key等字段。掌握这些优化技巧可有效提升查询性能。
2025-07-07 00:17:41
837
原创 MySQL 索引的分类
MySQL索引分类与选型指南 MySQL索引主要分为三类:按数据结构划分(B+Tree、Hash、全文、空间索引)、按物理存储划分(聚簇索引与非聚簇索引)、按逻辑功能划分(普通、唯一、主键、前缀、组合索引等)。其中B+Tree索引是最常用类型,支持范围查询和排序;Hash索引仅适合等值查询;聚簇索引决定数据物理存储顺序。组合索引需遵循最左前缀原则。 【选型建议】 优先使用B+Tree索引 精确匹配且数据量小时可选Hash索引 文本搜索用全文索引 空间数据用R-Tree索引 多列查询使用组合索引并注意最左前缀
2025-07-07 00:17:22
408
原创 MySQL EXPLAIN 详解
MySQL 的 EXPLAIN 是分析 SQL 性能的核心工具,通过解读执行计划优化查询效率。关键字段包括: type(访问类型):从最优的 system 到最差的 ALL,至少应达到 range 级别 key(实际使用索引):优先选择覆盖索引 rows(预估扫描行数):数值越小性能越好 Extra(额外信息):重点关注 Using index(覆盖索引)、Using temporary(临时表)等提示 核心优化点: 通过索引优化避免 ALL 全表扫描 利用覆盖索引减少回表操作 注意 Using files
2025-07-07 00:17:03
440
原创 MySQL EXPLAIN ANALYZE ( MySQL 8.0+ 新工具 )
MySQL 8.0.18引入的EXPLAIN ANALYZE工具将执行计划与实际性能数据结合,提供更精准的查询分析。它会实际执行查询并收集详细指标(耗时、处理行数、循环次数等),以树形结构展示执行计划与真实度量。关键优势在于能对比优化器预估与实际结果,精确定位性能瓶颈如行数估算偏差、无效索引使用和高耗时操作。语法为EXPLAIN ANALYZE <查询>,输出包含各节点的预估成本与实际执行数据(单次/总耗时、处理行数、循环次数)。典型应用场景包括分析连接顺序、索引效率及排序操作等,但需注意它会真
2025-07-07 00:16:45
515
原创 MySQL 的 PROFILE (MySQL 5.7 及之前版本 可用) 详解
MySQL 的 PROFILE 工具是分析SQL查询性能的关键功能,它能详细展示查询各阶段的资源消耗(时间、CPU、IO等),帮助定位性能瓶颈。通过SET profiling=1启用后,执行SHOW PROFILES查看查询列表,再用SHOW PROFILE CPU FOR QUERY [ID]分析具体查询。重点关注耗时高的阶段如Sending data、Sorting result等。注意该功能在MySQL 5.6.7+被弃用,推荐使用Performance Schema或MySQL 8.0+的EXPLA
2025-07-07 00:16:20
524
原创 MySQL 慢 SQL详解
MySQL慢SQL分析与优化指南 慢SQL是数据库性能瓶颈的主要原因,常见问题包括索引失效(未建索引、函数操作)、SQL写法不当(SELECT *、复杂JOIN)、数据量过大及锁竞争等。定位慢SQL可使用慢查询日志、EXPLAIN分析执行计划、Performance Schema监控和SHOW PROCESSLIST实时查看。 优化手段包括: 索引优化:避免函数操作,遵循最左前缀原则 SQL重写:子查询转JOIN,优化深分页查询 架构优化:分库分表、读写分离 高级技巧:利用索引覆盖和索引下推减少回表 建议建
2025-07-07 00:16:03
867
原创 MySQL 的两阶段提交(Two-Phase Commit, 2PC)
阶段主要操作目的关键日志控制参数PrepareRedo Log 写盘 +fsync+ 标记 PREPARE确保事务修改的物理页变更持久化,为提交或回滚做准备Redo LogBinlog 写盘 +fsync(根据设置)确保事务的逻辑操作记录持久化,用于复制和恢复BinlogCommitRedo Log 标记 COMMIT (通常异步刷盘)在引擎层正式提交事务,释放资源,数据可见Redo Log (状态更新)只要 Binlog 成功写入并刷盘,该事务在引擎层一定可以成功提交。
2025-07-06 15:06:09
565
原创 MySQL binlog 和 redo log 区别
MySQL 的 Binlog 和 Redo Log 是两种核心但不同的日志机制。Binlog 是 MySQL Server 层的逻辑日志,用于主从复制和数据恢复,记录 SQL 语句或行变更;Redo Log 是 InnoDB 引擎层的物理日志,用于崩溃恢复,记录数据页修改。Binlog 在事务提交后写入,可长期保留;Redo Log 在事务进行中持续写入,循环覆盖。两者通过两阶段提交机制协作保障数据一致性。理解它们的差异对掌握 MySQL 数据持久化、复制和恢复机制至关重要。
2025-07-06 15:03:16
481
原创 InnoDB 和 MyISAM 区别
MySQL的InnoDB和MyISAM是两种主要存储引擎,存在显著差异。InnoDB支持事务、行级锁、外键约束和崩溃恢复,采用MVCC机制提高并发性,默认使用聚集索引存储数据。MyISAM则不支持事务和外键,采用表级锁,数据与索引分离存储,COUNT(*)查询更快但崩溃恢复能力弱。自MySQL 5.5起,InnoDB成为默认引擎,适用于大多数需要事务和高并发的场景;MyISAM仅适用于特定场景,如读多写少、不需要事务的表。
2025-07-06 14:57:27
544
原创 MySQL 的日志文件 详解
MySQL日志文件详解 MySQL日志文件是其数据一致性和可靠性的核心保障,主要分为事务日志和二进制日志两大类。事务日志包括重做日志(Redo Log)和回滚日志(Undo Log),分别用于确保事务持久性和支持事务回滚/MVCC。二进制日志(Binlog)则用于主从复制和时间点恢复。不同日志在写入机制、内容格式和配置优化上各有特点,共同构建了MySQL的高性能、高可靠特性。合理配置日志参数(如innodb_flush_log_at_trx_commit、sync_binlog等)对系统性能和数据安全至关重
2025-07-06 14:53:23
706
原创 MySQL 的 `bin` 目录详解
MySQL 的 bin 目录包含数据库核心管理工具,主要分为六类:1) 核心服务器程序(如 mysqld 主进程、mysqld_safe 安全启动器);2) 客户端工具(mysql 命令行客户端、mysqladmin 管理工具);3) 备份恢复工具(mysqldump 逻辑备份、mysqlbinlog 日志处理);4) 维护诊断工具(mysqlcheck 表检查、mysql_upgrade 版本升级);5) 安装初始化工具(mysqld --initialize 数据目录初始化);6) 辅助工具(mysql
2025-07-06 14:53:01
740
原创 MySQL 的基础架构
MySQL 采用分层模块化架构,主要分为三层:连接层负责身份验证和线程管理;服务层处理 SQL 解析、优化和执行,包含日志系统;存储引擎层(如 InnoDB、MyISAM)负责数据存储,InnoDB 提供事务支持、缓冲池和日志机制(redo/undo log)。系统数据库存储元数据和性能信息,整体设计兼顾高效查询与数据安全。
2025-07-06 14:52:41
828
原创 InnoDB 的 Buffer Pool 详解
摘要:InnoDB的Buffer Pool是MySQL的核心内存组件,作为磁盘和内存之间的高速缓存层,主要作用是缓存数据页和索引页,减少磁盘I/O,提升数据库读写性能。其内部通过Free List、LRU List和Flush List等机制管理内存页,采用改进的LRU算法进行页面淘汰。关键特性包括预读机制、脏页刷新策略、多实例化设计等。Buffer Pool大小设置对性能至关重要,建议设为物理内存的50%-75%。MySQL 5.6+支持Buffer Pool预热功能,可通过SHOW ENGINE INN
2025-07-06 14:52:01
671
原创 MySQL 的 常用命令
MySQL常用命令分类总结:涵盖数据库操作(创建/删除/选择数据库)、表管理(创建/修改/删除表)、数据CRUD(增删改查)、索引管理、用户权限控制、事务处理、备份恢复及系统信息查询等核心功能。精选实用示例包括:创建带自增主键的用户表、条件查询订单、批量插入产品数据、事务控制及mysqldump备份等。特别标注高危操作警示(如DROP DATABASE),建议配合备份使用。该清单整合了MySQL日常管理90%的场景需求,命令均以英文分号结尾,SQL关键字推荐大写提升可读性。
2025-07-06 14:19:42
196
原创 MySQL 查询语句的执行顺序
MySQL查询语句的执行顺序与书写顺序完全不同,主要分为9个逻辑阶段:1.FROM/JOIN确定数据源;2.ON应用连接条件;3.WHERE行级过滤;4.GROUP BY分组聚合;5.HAVING组级过滤;6.SELECT选择列;7.DISTINCT去重;8.ORDER BY排序;9.LIMIT分页。关键区别在于WHERE在GROUP BY前执行,而HAVING在后,且SELECT阶段才能使用列别名。优化建议包括:尽早用WHERE过滤、避免SELECT*、谨慎使用排序和大分页。掌握执行顺序是SQL性能优化的
2025-07-06 13:57:19
842
原创 mysql -- count(1)、count(*) 与 count(列名) 的区别
MySQL 中 COUNT(1)、COUNT(*) 和 COUNT(列名) 的主要区别在于统计方式和性能优化: 统计目标:COUNT(*) 和 COUNT(1) 统计所有行(含 NULL),COUNT(列名) 只统计非 NULL 值 性能优化:InnoDB 引擎中 COUNT(*) 会优先使用最小二级索引,比 COUNT(主键) 更快;MyISAM 直接读取元数据 使用建议:统计总行数用 COUNT(*);统计非 NULL 列用 COUNT(列名);避免使用 COUNT(主键) 执行计划:COUNT(*)
2025-07-06 13:45:09
574
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人