
分布式理论&实践
文章平均质量分 92
分布式理论
分布式实践
csdn_tom_168
富贵如可求,虽执鞭之士,吾亦为之。如不可求,从吾所好。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
分布式常见框架全景图:按场景分类的核心工具解析
分布式系统核心框架分类解析 本文系统梳理了分布式系统七大场景下的主流框架工具: 1. 服务治理 Spring Cloud Alibaba:一站式微服务解决方案(Nacos+Sentinel+Seata) Dubbo:高性能Java RPC框架 gRPC:跨语言通信标准(HTTP/2+Protobuf) 2. 配置管理 Apollo:企业级配置中心(多环境/灰度发布) Nacos Config:与服务发现集成的轻量方案 Consul:多数据中心支持 3. 消息队列 Kafka:大数据实时处理首选 Rocket原创 2025-07-04 00:15:39 · 814 阅读 · 0 评论 -
Redis + Caffeine 协同注解实践:自定义缓存注解实现分层缓存
Redis+Caffeine 分层缓存实践 本文介绍通过自定义注解实现Redis与Caffeine协同缓存方案,主要包含: 设计目标:通过@HybridCacheable注解实现"本地缓存→Redis→数据库"三级缓存架构,支持灵活配置过期时间、防穿透等特性。 核心实现: 定义注解@HybridCacheable,可配置缓存名称、本地/Redis过期时间等参数 开发复合缓存管理器HybridCacheManager,整合Caffeine本地缓存和Redis缓存 实现HybridCache原创 2025-07-04 00:10:20 · 644 阅读 · 0 评论 -
Caffeine vs Guava Cache:Java 本地缓存的双雄对决
Caffeine与Guava Cache是Java生态中两大主流本地缓存框架。Caffeine采用W-TinyLFU算法和无锁设计,在高并发场景下性能更优(单节点QPS可达10万+),支持异步加载和精细监控,适合电商大促等高流量场景。Guava Cache基于LRU算法实现简单,与Guava生态集成紧密,适合配置缓存等轻量级应用。关键区别:Caffeine在算法先进性(W-TinyLFU vs LRU)、功能丰富度(异步支持)和性能表现上更胜一筹,而Guava Cache则以简单易用见长。选型时,高频复杂场原创 2025-07-04 00:09:59 · 870 阅读 · 0 评论 -
Caffeine 详解:Java 本地缓存的性能之王
Caffeine是Google开发的高性能Java本地缓存库,采用W-TinyLFU算法优化缓存命中率,支持异步加载、多种过期策略和监听器机制。其核心优势在于内存级的访问延迟(纳秒级)和无锁设计,适用于单节点高频数据访问场景,如会话缓存、热点配置等。相比Guava Cache,Caffeine提供更智能的缓存淘汰策略和丰富的扩展功能;相比Redis,它更适合本地小规模缓存需求。通过灵活的配置选项和统计监控,Caffeine成为Java生态中最强大的本地缓存解决方案之一。原创 2025-07-04 00:09:39 · 776 阅读 · 0 评论 -
Apollo vs Nacos Config:分布式配置管理工具的深度对比
摘要 Apollo和Nacos Config是两大主流分布式配置管理工具,各有侧重。Apollo专注于精细化配置管理,提供动态推送、版本控制和灰度发布等企业级功能,适合需要严格配置治理的大型系统。Nacos Config作为云原生服务治理套件的一部分,整合了服务发现与配置管理,更贴合微服务的一站式需求。两者在配置管理能力、动态推送效率、版本控制、权限安全等方面存在差异:Apollo在实时性、灰度策略和审计日志上更优,而Nacos与Spring生态集成更深。架构上,Apollo采用独立配置中心设计,Nacos原创 2025-07-04 00:08:50 · 766 阅读 · 0 评论 -
XA 协议详解:分布式事务的标准解决方案
XA协议是分布式事务的标准解决方案,采用两阶段提交(2PC)机制确保跨资源操作的原子性。通过事务管理器(TM)协调多个资源管理器(RM),XA协议实现了强一致性,适用于金融等对一致性要求严格的场景。其核心流程包括准备阶段(RM完成操作但不提交)和提交/回滚阶段(TM统一决策)。尽管XA协议标准化程度高、可靠性强,但也存在性能开销大、阻塞风险高等缺点。实际应用中需权衡其优缺点,配合容错优化措施,并根据业务特性选择适合的分布式事务方案。原创 2025-07-04 00:08:19 · 780 阅读 · 0 评论 -
Apollo(携程)详解:分布式配置管理中心的行业标杆
Apollo(携程)分布式配置管理中心详解 Apollo是携程自主研发的分布式配置管理工具,解决了传统配置管理方式在分布式系统中的痛点。核心功能包括: 集中化管理:多环境、多应用/集群配置管理 动态推送:通过长轮询实现配置实时更新 版本控制:支持历史版本查看与回滚 灰度发布:按流量比例或用户标签定向推送 权限审计:细粒度权限控制与操作日志记录 采用客户端-服务器架构,支持集群部署和本地缓存,确保高可用性。适用于微服务配置管理、活动运营、多环境管理等场景,相比Nacos和Consul更专注于配置管理功能。原创 2025-07-03 00:22:27 · 1029 阅读 · 0 评论 -
gRPC 与 Dubbo 深度对比:高性能 RPC 框架的选择指南
摘要:gRPC(基于HTTP/2和Protobuf)与Dubbo(基于自定义TCP协议)是两大主流RPC框架。gRPC优势在于跨语言支持、高性能和云原生适配,适合跨语言通信和高性能场景;Dubbo在Java生态中表现优异,提供完善的服务治理能力,适合Spring Cloud微服务架构。性能方面,gRPC在跨语言场景更优,而Dubbo在Java同构系统中接近。选型需考虑业务需求:跨语言/云原生选gRPC,Java微服务/强治理需求选Dubbo。原创 2025-07-03 00:22:03 · 677 阅读 · 0 评论 -
gRPC 详解:高性能跨语言 RPC 框架的核心原理与实践
gRPC 是由 Google 开发的高性能开源 RPC 框架,基于 HTTP/2 协议和 Protobuf 序列化技术,实现跨语言、跨平台的高效服务通信。其核心优势包括:采用 HTTP/2 多路复用解决传统 RPC 性能瓶颈,使用 Protobuf 二进制编码提升序列化效率,通过.proto文件定义服务实现标准化接口。gRPC支持四种通信模式(一元、服务端流、客户端流、双向流),满足不同业务场景需求,并内置负载均衡、认证加密等能力,成为微服务架构中的主流RPC框架选择。原创 2025-07-03 00:21:31 · 591 阅读 · 0 评论 -
Consul 与 Nacos 深度对比
Consul vs Nacos:分布式服务治理工具对比 Consul和Nacos都是主流的服务治理工具,提供服务发现、配置管理、健康检查等核心功能。Consul采用Raft协议保证强一致性,适合多数据中心和混合云场景,与HashiCorp生态深度集成。Nacos基于Spring Cloud Alibaba,支持动态配置推送和多格式配置管理,更适合云原生微服务开发。 Consul优势在于跨数据中心同步和成熟生态,Nacos则以易用性和Spring Cloud集成见长。选择时需考虑一致性需求、生态兼容性和部署复原创 2025-07-03 00:21:04 · 1001 阅读 · 0 评论 -
Consul 与 Java 深度集成:微服务治理的实战指南
Consul与Java深度集成摘要: Consul作为服务治理工具,与Java生态无缝对接。通过官方Java客户端或Spring Cloud组件,可实现服务注册、发现和健康检查。Spring Boot项目借助@EnableDiscoveryClient自动注册服务,DiscoveryClient动态发现实例,Actuator提供健康检查端点。非Spring项目可手动调用Consul API实现相同功能。该集成方案为微服务架构提供了可靠的服务治理基础,支持负载均衡和故障自动检测,是构建健壮分布式系统的首选方案原创 2025-07-03 00:20:29 · 787 阅读 · 0 评论 -
Consul 详解
Consul是HashiCorp开发的分布式服务治理工具,提供四大核心功能:服务发现(支持HTTP/DNS接口)、健康检查(HTTP/TCP/gRPC等多种方式)、键值存储(强一致KV数据库)和多数据中心支持(跨地域服务协同)。采用客户端-服务器架构,通过Raft协议保证一致性,Gossip协议实现节点通信,并支持ACL访问控制。相比ZooKeeper、Eureka等工具,Consul功能更全面,适用于微服务治理、配置管理等场景,生产环境建议至少部署3节点集群。原创 2025-07-03 00:20:09 · 712 阅读 · 0 评论 -
Redisson RLock 与 Curator InterProcessMutex 对比
Redisson RLock 和 Curator InterProcessMutex 是两种主流的分布式锁实现方案,分别基于Redis和ZooKeeper。RLock利用Redis的原子操作和看门狗机制实现锁续期,性能更高(10万QPS),适合高并发场景但存在弱一致性风险;InterProcessMutex基于ZooKeeper临时节点,提供强一致性(5000QPS),适合金融等要求严格一致性的场景。选型建议:高并发优先RLock,强一致选InterProcessMutex,已有对应基础设施时可复用。需注意原创 2025-07-03 00:19:39 · 996 阅读 · 0 评论 -
Apache Curator 框架详解 && InterProcessMutex(跨进程互斥锁)详解
Apache Curator 是一个专为简化 ZooKeeper 开发的客户端框架,解决了原生 API 的诸多痛点。它提供以下核心功能: 封装底层操作:简化连接管理、节点操作等基础功能 内置高级分布式原语:包括分布式锁(InterProcessMutex)、领导选举(LeaderSelector)、队列(Queue)等 智能重试机制:自动处理网络波动和会话超时 框架优势体现在: 减少模板代码 快速实现复杂分布式逻辑 确保连接稳定性 提供实时监控能力 典型应用场景包括: 分布式锁(秒杀系统) 主节点选举(任务原创 2025-07-03 00:18:59 · 903 阅读 · 0 评论 -
Redisson 框架详解 && Redisson RLock 分布式可重入锁详解
Redisson框架:Redis分布式协调利器 Redisson是一款基于Redis的Java分布式协调框架,通过封装Redis底层操作,提供分布式锁、原子变量、分布式集合等高级功能,解决分布式系统资源竞争和数据一致性问题。 核心优势: 功能丰富:内置30+分布式组件,快速实现复杂逻辑 高性能:基于Netty异步IO,单节点QPS超10万 易用性:API设计贴近Java原生集合 高可靠性:支持Redis集群、哨兵等多种部署模式 核心组件: RedissonClient:统一管理Redis连接 RLock:分原创 2025-07-03 00:18:45 · 726 阅读 · 0 评论 -
分布式 ID 生成方案 介绍
UUID(Universally Unique Identifier)是 RFC 4122 定义的标准,通过随机数或时间戳生成 128 位的唯一标识符,通常表示为 32 位十六进制字符串(如。在分布式系统中,生成全局唯一的 ID 是核心需求之一。传统的单机自增 ID 无法满足跨节点、跨数据库的场景,因此需要设计。最终目标是平衡唯一性、性能、成本和可维护性,确保 ID 生成服务稳定支撑业务发展。命令原子性递增生成 ID,结合时间戳或机器 ID 增强唯一性。Leaf 是美团开源的分布式 ID 生成服务,支持。原创 2025-07-03 00:17:58 · 849 阅读 · 0 评论 -
ELK(Elasticsearch + Logstash + Kibana)部署指南
本文详细介绍了ELK(Elasticsearch + Logstash + Kibana)系统的部署方案,涵盖单机测试和生产集群两种模式。部署流程包括环境准备、ES集群配置、Logstash数据管道设置、Kibana可视化部署等关键步骤,并提供生产环境优化建议如JVM调优、索引生命周期管理、安全加固等。文章还包含故障排查方法和扩展方案,强调稳定性、性能、安全性和可维护性是ELK部署的核心。适用于日志集中管理、分析与可视化场景,可根据业务规模选择单机或集群模式。原创 2025-06-20 06:52:27 · 1074 阅读 · 0 评论 -
Zipkin 详解与集成部署指南
Zipkin是一个开源的分布式追踪系统,用于监控分布式架构中的请求链路,帮助定位性能问题。核心功能包括全链路追踪、性能分析、服务拓扑可视化等。其模块化架构包含收集器、存储层、查询服务和UI界面,支持多种存储引擎和部署方式(单机、集群或容器化)。集成时可通过Brave或OpenTelemetry SDK实现低侵入式数据采集,并提供Java等多语言支持。生产环境需优化采样率、存储策略和告警规则,同时关注安全性、扩展性与成本控制。Zipkin广泛应用于企业级监控场景,持续迭代并与云原生生态深度集成。原创 2025-06-19 00:09:17 · 821 阅读 · 0 评论 -
Apache PinPoint 详解与集成部署指南
Apache PinPoint是一款开源的分布式系统性能监控工具,提供全链路追踪、实时性能分析和服务拓扑可视化功能。其采用无侵入式Java Agent技术,支持跨服务调用追踪和细粒度指标监控。部署方式涵盖单机、分布式及容器化方案,并支持HBase、Elasticsearch等存储后端。关键优势包括低性能损耗、插件化扩展和活跃社区支持。通过配置Agent和调整采样率可快速集成Java/PHP/Python应用,适用于故障定位和架构优化场景。原创 2025-06-19 00:08:58 · 652 阅读 · 0 评论 -
Apache SkyWalking 详解与集成部署指南
Apache SkyWalking 是一款开源应用性能监控平台,专为微服务和云原生架构设计,提供全链路追踪、性能分析、服务拓扑可视化等功能。其核心优势包括无侵入式监控、多语言支持(Java、Go等)以及可扩展架构。部署方式灵活,支持单机、分布式及容器化(Docker/K8s)部署,存储兼容Elasticsearch、MySQL等。集成简单,通过Java Agent即可实现零代码修改接入。高级功能包括告警规则配置、服务网格集成(Istio/Envoy)及存储优化。适用于企业级监控需求,已被阿里、腾讯等广泛采用原创 2025-06-19 00:08:34 · 575 阅读 · 0 评论 -
Apache Solr 和 Elasticsearch 对比 速览
Solr与Elasticsearch均基于Lucene构建,但在架构与功能上各有特色。Solr采用SolrCloud模式依赖ZooKeeper,支持静态Schema和显式提交;Elasticsearch采用P2P架构自动发现,支持动态映射和近实时搜索。Solr提供丰富查询语法和Facet聚合,Elasticsearch则擅长DSL查询和复杂聚合分析。二者都支持地理位置搜索,但Elasticsearch独有图搜索功能。性能上Elasticsearch吞吐量更高延迟更低,Solr则更适合高并发场景。生态系统方面原创 2025-06-15 00:15:16 · 779 阅读 · 0 评论 -
ElasticJob 与 XXL-JOB 详细对比 速览
ElasticJob 与 XXL-JOB 对比摘要 ElasticJob 采用去中心化架构,依赖 ZooKeeper/Etcd 协调,适合海量数据处理场景,支持任务分片和自动弹性扩容,但配置较复杂。XXL-JOB 采用中心化架构,提供友好的可视化界面和简单配置,适合轻量级任务快速集成,但不支持原生分片。性能方面,ElasticJob 吞吐量更高,XXL-JOB 存在调度中心单点瓶颈。易用性上,XXL-JOB 开发成本更低。实际选型需结合业务场景:ElasticJob 适合大数据量、高并发的分布式任务,XXL原创 2025-06-15 00:14:25 · 648 阅读 · 0 评论 -
ShardingSphere-JDBC 设计原理 速览
摘要: ShardingSphere-JDBC作为Apache ShardingSphere的核心组件,通过增强JDBC驱动提供透明的分布式数据库服务。其架构包括JDBC驱动层、SQL解析层、路由引擎层、改写引擎层、执行引擎层和结果归并层,实现分片、读写分离等功能。核心模块涵盖SQL解析、路由策略、SQL改写、并发执行和结果归并,并支持分布式事务、数据加密等高级特性。设计上强调透明化、无中心化和弹性扩展,无需修改应用代码即可实现高性能的分布式数据访问,适用于海量数据和高并发场景。原创 2025-06-14 00:12:04 · 1000 阅读 · 0 评论 -
ElasticJob 速览
ElasticJob是Apache ShardingSphere子项目,提供分布式任务调度解决方案。其去中心化架构通过Zookeeper协调,支持弹性扩容、故障自动转移和作业分片处理,适用于海量数据处理场景。核心功能包括动态分片策略、多种作业类型(Simple/Dataflow/Script)、完善的监控管理。相比XXL-JOB,ElasticJob在分布式能力上更优但学习成本较高,典型应用包括电商订单处理、金融数据同步等。最佳实践需注重分片策略选择和资源隔离,建议结合业务规模选择Lite(轻量级)或Clo原创 2025-06-14 00:11:31 · 899 阅读 · 0 评论 -
XXL-JOB 详解 速览
XXL-JOB是一款轻量级分布式任务调度平台,采用中心化调度(Admin)和去中心化执行(Executor)的C/S架构,具有开发迅速、学习成本低等特点。它通过调度中心与执行器分离的设计实现任务解耦,支持动态修改任务参数和可视化监控。核心功能包括任务管理、日志记录、失败重试、API触发和任务依赖等,适用于优惠券发放、数据备份等场景。集成Spring Boot仅需简单配置即可快速部署,并提供丰富的路由策略和分布式锁机制保障任务可靠性。使用时需注意端口冲突、时区一致性等问题。原创 2025-06-14 00:11:00 · 894 阅读 · 0 评论 -
使用 Sleuth、Zipkin、Kafka 和 Elasticsearch 搭建分布式链路追踪系统
本文介绍如何利用Sleuth、Zipkin、Kafka和Elasticsearch构建分布式链路追踪系统。通过Sleuth生成链路ID,Kafka异步传输数据,Zipkin进行可视化分析,Elasticsearch持久化存储,实现全链路追踪。详细步骤包括环境部署、微服务集成和数据验证,并提供了生产环境优化建议和故障排查方法。该方案具有异步解耦、高可用存储和低侵入性等优势,能有效提升微服务系统的可观测性。原创 2025-06-14 00:08:41 · 641 阅读 · 0 评论 -
分布式算法 - Snowflake算法
Snowflake算法通过巧妙地将时间戳、工作机器ID和序列号组合,在保证ID全局唯一的同时实现了趋势递增,非常适合分布式系统的高并发ID生成需求,是分布式系统设计中的重要基础组件之一。Snowflake算法是Twitter开源的分布式ID生成算法,用于在分布式系统中生成全局唯一且趋势递增的ID,满足高并发、高性能的需求。是否大于上次时间戳?原创 2025-06-08 02:24:43 · 906 阅读 · 0 评论 -
分布式算法 - 一致性Hash算法
一致性Hash算法通过将数据和节点映射到环形空间,巧妙地解决了分布式系统中节点变动时的数据迁移问题,在保证数据一致性的同时大幅减少了系统开销,是分布式系统设计中的重要基础算法之一。一致性Hash算法是为了解决分布式缓存系统中节点增减时数据迁移量过大而提出的算法,最早由MIT的Karger等人于1997年提出。计算数据Key的Hash值。原创 2025-06-08 02:21:22 · 806 阅读 · 0 评论 -
分布式算法 - ZAB算法
采用主从架构简化设计结合ZXID实现高效的Leader选举和数据同步通过原子广播协议保证操作的原子性和顺序性在工程实现上注重性能和可靠性平衡ZAB在ZooKeeper中得到了成功应用,证明了其在分布式协调场景下的有效性,但相比Raft等算法,其学习和实现复杂度较高。原创 2025-06-08 02:18:41 · 728 阅读 · 0 评论 -
分布式算法 - Paxos算法
设计哲学Paxos:理论优先,通用性强Raft:工程优先,易理解实现方式Paxos:需要自行实现日志复制、选举等机制Raft:内置完整解决方案运维体验Paxos:故障排查困难Raft:状态机清晰,易于监控适用场景Paxos:需要高度定制化的系统Raft:需要快速落地的生产系统。原创 2025-06-08 02:10:13 · 702 阅读 · 0 评论 -
分布式算法 - Raft算法
易于理解:将复杂的一致性问题分解为几个清晰的子问题强领导:通过领导者集中管理日志复制安全性保证:通过任期号和日志一致性检查保证安全可用性:通过领导者选举保证系统可用性性能:日志复制是并行的,可以高效处理大量请求Raft算法通过这种设计,在保证强一致性的同时,提供了良好的可理解性和实现性,广泛应用于分布式系统中。原创 2025-06-08 01:41:54 · 582 阅读 · 0 评论 -
分布式事务的空补偿与悬挂问题详解及解决方案
分布式事务中的空补偿与悬挂问题是常见的数据一致性问题。空补偿指补偿操作执行时原业务未实际执行,而悬挂则是补偿操作先于原业务执行,均会导致数据不一致。解决方案需遵循幂等性设计、状态机控制和消息顺序保证原则,包括业务状态校验、分布式锁防护及状态机框架应用。同时需建立监控告警体系,对空补偿次数和异常状态跳转等指标进行实时监测。最佳实践建议在设计阶段明确状态流转图,开发阶段实现完善的日志和测试,运维阶段定期检查优化。通过系统级防护和业务校验,可以有效解决这些问题,保障分布式系统数据一致性。原创 2025-06-08 00:16:15 · 851 阅读 · 0 评论 -
分布式事务-2PC、3PC、TCC全方面对比
摘要 本文对比了三种分布式事务解决方案:2PC(两阶段提交)、3PC(三阶段提交)和TCC(Try-Confirm-Cancel)。2PC通过准备和提交两阶段实现强一致性,但存在阻塞和单点故障问题;3PC增加预提交阶段以减少阻塞,但仍有数据不一致风险;TCC通过预留资源方式实现最终一致性,适合复杂业务但实现成本高。流程图和表格直观展示了三者的阶段划分、一致性级别和适用场景差异。Java代码示例分别实现了2PC和3PC的协调逻辑,体现不同方案的编程模式。总体而言,2PC简单但不可靠,3PC改进可用性,TCC灵原创 2025-06-06 10:38:36 · 718 阅读 · 0 评论 -
分布式理论 - BASE理论
BASE理论与分布式事务设计摘要 BASE理论是分布式系统设计的核心原则,包含三要素:基本可用(系统故障时保证核心功能)、软状态(允许数据短暂不一致)和最终一致性(确保数据最终同步)。该理论是对CAP定理中AP系统的补充,通过牺牲强一致性换取高可用性,适用于电商大促、社交网络等场景。在微服务架构中,可通过事件驱动、Saga模式等实现跨服务最终一致性事务,典型案例如DynamoDB、Cassandra等系统。BASE理论的优势在于高可用和可扩展性,但也带来数据短暂不一致等挑战,需结合业务场景权衡设计。原创 2025-06-06 00:11:06 · 841 阅读 · 0 评论 -
分布式理论 - CAP
分布式系统CAP定理与最终一致性解析 CAP定理指出分布式系统无法同时满足一致性、可用性和分区容错性。实际应用中,系统通常在CP(强一致)和AP(高可用)之间选择。CP系统如ZooKeeper牺牲可用性保证数据一致,而AP系统如Cassandra通过异步复制、Gossip协议等手段实现最终一致性。后者允许短暂不一致,换取高可用性。现代分布式系统常采用混合策略(如Saga模式)灵活平衡CAP特性,根据业务需求选择强一致或最终一致方案。最终一致性适用于社交网络、电商等容忍延迟的场景,而金融系统则需强一致性保障。原创 2025-06-06 00:10:09 · 968 阅读 · 0 评论