
MQ
文章平均质量分 92
csdn_tom_168
富贵如可求,虽执鞭之士,吾亦为之。如不可求,从吾所好。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Apache Pulsar + Spring Boot 深度集成指南
本文介绍了Apache Pulsar与Spring Boot的深度集成方案。主要内容包括:Pulsar的核心组件(Broker、BookKeeper等)和集成优势(统一消息模型、低延迟高吞吐等);环境准备与依赖配置步骤;生产者与消费者的实现方式;以及高级特性如Schema管理、事务支持和消息路由策略的实现。该集成方案可帮助开发者构建高性能、可扩展的实时数据应用,支持百万级消息处理能力和完善的权限隔离机制。原创 2025-08-15 01:12:42 · 906 阅读 · 0 评论 -
Serverless Eventing:探索 Pulsar 作为 Knative Eventing 的后端详解
Serverless Eventing:Pulsar 作为 Knative Eventing 后端概述 在云原生架构中,Apache Pulsar 凭借其高吞吐、低延迟和多租户特性,成为 Knative Eventing 的理想后端消息系统。本文探讨了 Pulsar 作为 Knative Channel Backend 的优势和实现方式: 架构对比:Pulsar 提供持久化、分层存储和跨地域复制能力,相比 Kafka 更适合 Serverless 场景 核心集成:通过 PulsarChannel CRD 将原创 2025-08-11 00:13:04 · 791 阅读 · 0 评论 -
Pulsar Proxy:理解其作用(简化客户端连接管理、增强安全性)和配置详解
Pulsar Proxy 摘要(148字) Pulsar Proxy 是 Apache Pulsar 的可选网关组件,作为客户端与 Broker 间的反向代理,提供两大核心功能:1)简化客户端连接管理,通过单一入口屏蔽后端 Broker 拓扑变化;2)增强安全性,实现 TLS 终止、集中认证和访问控制。其无状态设计支持水平扩展,建议部署时前挂负载均衡器。配置需关注服务地址、TLS 证书、认证转发等关键参数,适合多租户与公网接入场景,是生产环境提升安全性与可维护性的重要中间层。原创 2025-08-11 00:12:40 · 931 阅读 · 0 评论 -
Pulsar 性能调优与故障排除:常见问题诊断详解(积压、高延迟、节点故障、复制延迟、OOM、GC 停顿)
Pulsar 性能调优与故障排除指南 本文系统性地梳理了 Apache Pulsar 在生产环境中常见的六大性能与稳定性问题: 消息积压(Backlog):因消费速度不足导致的堆积问题 高延迟(High Latency):消息发送与接收延迟过高 节点故障(Node Failure):Broker/Bookie 进程异常退出 复制延迟(Replication Lag):跨地域同步延迟问题 内存溢出(OOM):JVM 内存不足导致的崩溃 GC 停顿(GC Pauses):垃圾回收导致的处理暂停 文章针对每个问题原创 2025-08-11 00:12:26 · 585 阅读 · 0 评论 -
Pulsar 性能调优与故障排除:Bookie 调优详解(Journal vs Ledger 磁盘分离、Read/Write Cache、GC 参数、IO 线程数)
摘要: 本文深入解析Apache Pulsar中Bookie节点的核心调优策略。Bookie作为BookKeeper的存储节点,其性能直接影响Pulsar的写入吞吐和延迟。针对高并发场景下的写入延迟、消息堆积等问题,提出四大优化方向: 磁盘分离:强制Journal(顺序写)与Ledger(随机读写)使用独立磁盘,避免I/O干扰,推荐Journal使用NVMe SSD; 缓存优化:合理配置Write/Read Cache大小,启用OS页缓存(usePageCache=true),注意堆外内存分配; JVM G原创 2025-08-11 00:12:03 · 704 阅读 · 0 评论 -
Pulsar 性能调优与故障排除:Broker 调优详解(Managed Ledger Cache、Journal/DB 分离配置、GC 参数)
Pulsar Broker 性能调优三大核心方向 Managed Ledger Cache调优 堆外缓存优化消息读取性能,建议8-16GB(managedLedgerCacheSizeMB) 监控缓存命中率(目标>90%),避免频繁Ledger滚动 Journal与DB目录分离 ZooKeeper事务日志(dataLogDir)需NVMe SSD保障低延迟 生产环境建议独立部署ZK集群,避免I/O竞争 JVM GC参数优化 推荐G1GC(停顿<50ms)或ZGC(停顿<10ms) 必须设置原创 2025-08-11 00:11:49 · 1071 阅读 · 0 评论 -
Pulsar 性能调优与故障排除:客户端调优详解(Batch、Compression、IO Threads、Connections、Ack Timeout)
Pulsar客户端性能调优与故障排查指南 本文深入分析了Apache Pulsar客户端(Producer/Consumer)的关键调优参数,包括批处理(Batching)、压缩(Compression)、IO线程、连接管理和确认超时(Ack Timeout)等核心配置。针对不同应用场景(高吞吐/低延迟)提供具体调优建议:高吞吐场景建议增大批次(10K消息)和压缩(ZSTD),低延迟场景则需减少批次延迟(0ms)。同时指出常见故障模式,如消息积压可能由Consumer处理慢且未启用ackTimeout导致,原创 2025-08-11 00:11:30 · 867 阅读 · 0 评论 -
Pulsar 性能调优是一个系统工程,需从 网络、CPU、内存、磁盘、GC 五个维度综合分析
Apache Pulsar 性能调优与故障排除指南 本文系统分析了 Pulsar 分布式消息系统的性能瓶颈及优化方案,涵盖网络、CPU、内存、磁盘 I/O 和 JVM GC 五大核心维度。针对常见问题如消息延迟高、CPU 过载、GC 停顿等,提供了具体检测方法(如 jstack、iostat)和调优建议(压缩传输、SSD 配置、G1GC 优化等)。同时给出了 Broker/Bookie 的推荐资源配置,并建立了标准化的故障排查流程,强调通过指标监控和日志分析定位问题。适用于需要提升 Pulsar 集群稳定性原创 2025-08-10 01:15:18 · 881 阅读 · 0 评论 -
Pulsar 性能调优与故障排除详解
Pulsar性能调优与故障排除指南 Pulsar作为分布式消息系统,性能调优需关注网络、CPU、内存、磁盘I/O和JVM GC五大核心层面。常见问题包括生产/消费延迟、吞吐瓶颈、连接失败等,可通过指标监控(Prometheus)、日志分析和工具检测(iftop/iostat/jstack等)定位。关键优化建议: 网络:升级10Gbps带宽,启用Jumbo Frame CPU:调整Broker/Bookie线程数,避免资源争抢 磁盘:Journal必须使用NVMe SSD,分离存储路径 JVM:采用G1GC,原创 2025-08-10 01:14:06 · 869 阅读 · 0 评论 -
Pulsar Tiered Storage 深入:优化大规模历史数据存储和查询效率 详解
**Pulsar Tiered Storage 通过将冷数据从本地存储自动卸载至低成本云存储(如S3/GCS),实现了存储成本优化与无限数据保留。其核心价值包括降低5-10倍存储成本、释放Bookie空间、支持透明历史数据查询。架构上采用Ledger为基本单位,支持自动/手动触发归档,并提供多后端存储选择。通过透明读取、Broker缓存等机制优化查询效率,同时支持性能调优与成本监控。典型应用于金融审计、IoT数据存储等场景,最佳实践建议生产环境必开此功能并配合缓存策略。该技术使Pulsar兼具消息系统与流式原创 2025-08-10 01:13:40 · 1082 阅读 · 0 评论 -
Kafka on Pulsar (KoP) 详解
Kafka on Pulsar (KoP) 技术解析 KoP 是 Apache Pulsar 的协议插件,允许 Kafka 客户端直接连接 Pulsar 集群,实现协议级兼容。其核心特性包括: 无缝迁移:Kafka客户端零代码修改即可接入 完整协议支持:兼容Kafka 2.8+协议,包括事务、消费者组等 架构映射: Kafka Topic → Pulsar持久化Topic 分区 → Pulsar分区Topic 消费者组 → Pulsar订阅模式 部署方案: 通过NAR包扩展Pulsar Broker 监听独原创 2025-08-10 01:13:17 · 604 阅读 · 0 评论 -
Pulsar 与流处理引擎Apache Spark 集成 详解
Pulsar与Spark集成指南摘要 Pulsar与Spark的集成(通过pulsar-spark-connector)支持流批统一处理,适用于实时ETL、数据湖入湖和复杂分析场景。核心特性包括Structured Streaming消费、批处理历史消息、Schema支持(JSON/Avro)及Exactly-Once语义。 实现方式: 消费Pulsar:通过Spark Streaming或批处理模式读取消息,支持事件时间窗口计算。 写入Pulsar:将处理结果(如聚合数据)写回Pulsar Topic,支原创 2025-08-10 01:12:56 · 1064 阅读 · 0 评论 -
Pulsar 与流处理引擎集成:Apache Flink 详解
Pulsar 与 Flink 集成构建实时流处理架构 Apache Pulsar 作为高性能消息系统与 Apache Flink 流计算引擎的深度整合,通过官方 pulsar-flink-connector 实现: 核心能力:精确一次处理(Exactly-Once)、事件时间窗口计算、状态管理及容错机制 关键配置:支持 Flink 1.14+,提供 Pulsar Source/Sink 连接器,兼容 JSON/Avro 等 Schema 典型场景:实时词频统计案例展示从 Pulsar 消费→Flink 处理原创 2025-08-09 01:35:59 · 819 阅读 · 0 评论 -
Pulsar Functions 详解
摘要: Apache Pulsar Functions 是 Pulsar 内置的无服务器流处理框架,支持轻量级 ETL、过滤、路由等操作,无需依赖外部引擎。其优势包括原生低延迟、多语言支持(Java/Python/Go)、Serverless 自动扩缩容,并与 Pulsar Schema 深度集成。核心功能涵盖输入/输出 Topic 绑定、状态存储及精确一次语义(EFFECTIVELY_ONCE)。支持线程/进程/Kubernetes 三种运行模式,推荐生产环境使用 Kubernetes 实现隔离。通过 P原创 2025-08-09 01:35:45 · 971 阅读 · 0 评论 -
Pulsar 水平扩展与负载均衡详解
Pulsar水平扩展与负载均衡机制 Pulsar通过无状态Broker和分层架构实现弹性扩展能力。核心架构包含Broker(无状态路由)、Bookie(有状态存储)和ZooKeeper(元数据)。Broker通过Bundle机制实现负载均衡,每个Namespace被划分为多个Bundle,系统自动监控负载并动态迁移Bundle到空闲Broker。同时支持Bundle自动拆分以提升并行度。Bookie层面则通过Autorecovery机制自动完成数据均衡。最佳实践包括合理设置Bundle数量、监控关键指标以及原创 2025-08-09 01:35:25 · 653 阅读 · 0 评论 -
Pulsar 地理复制(Geo-Replication)详解
Pulsar Geo-Replication 核心要点 Pulsar 原生支持跨集群异步数据复制,提供两种配置方式: Global Topic(自动全量复制,不推荐生产) 普通Topic+Cluster级复制(推荐,支持精细控制) 关键能力 ✔️ 双向/单向多活复制 ✔️ 毫秒级延迟 ✔️ 自动循环检测 ✔️ 命名空间级配置 ✔️ 内置监控指标 最佳实践 • 生产环境优先选择命名空间级复制 • 双向复制需业务实现幂等 • 监控复制延迟与积压 • 跨云部署注意带宽成本 适用于容灾、多活、数据就近访问等场景,相原创 2025-08-09 01:35:10 · 894 阅读 · 0 评论 -
Pulsar 持久化策略与分层存储详解
摘要: Apache Pulsar通过保留策略(Retention)、**积压策略(Backlog Quota)和分层存储(Tiered Storage)**实现高效数据管理。保留策略控制消息保留时长与大小;积压策略限制未确认消息量,防止资源耗尽;分层存储将冷数据卸载至低成本存储(如S3、GCS),降低本地磁盘压力。三者协同保障数据可用性,优化成本与性能,适用于金融、日志等场景,需结合监控与告警确保稳定性。原创 2025-08-09 01:34:58 · 674 阅读 · 0 评论 -
Pulsar 监控与告警详解
Pulsar监控与告警体系详解 Pulsar通过内置指标(Metrics)结合Prometheus+Grafana构建可视化监控,并支持日志分析告警。核心监控点包括: 关键指标 Broker:生产者/消费者连接数、吞吐量、延迟、积压消息 Bookie:写入/读取延迟、副本状态、磁盘使用 ZooKeeper:响应延迟、连接数 JVM:GC暂停、内存使用 可视化方案 配置Prometheus采集各组件指标 导入官方Grafana仪表盘(如Broker吞吐、Bookie延迟等) 日志分析 定位典型问题(如副本缺失原创 2025-08-08 00:59:28 · 815 阅读 · 0 评论 -
Pulsar 多租户与资源管理详解
Pulsar 多租户与资源管理详解 Pulsar 原生支持多租户架构,采用 Tenant → Namespace → Topic 三级模型,实现资源隔离与精细管控。 核心功能 租户管理:通过 pulsar-admin 创建/配置租户,指定管理员角色和可用集群 命名空间策略:支持存储配额、消息TTL、积压控制、速率限制等策略配置 权限体系:基于JWT/OAuth2等认证方式,支持从租户到订阅的多级授权(produce/consume等操作) 跨集群复制:通过命名空间策略实现多集群消息同步 典型场景:适用于Sa原创 2025-08-08 00:58:54 · 866 阅读 · 0 评论 -
Pulsar BookKeeper Autorecovery 性能调优指南
Apache BookKeeper的Autorecovery机制是保障Pulsar数据高可用的核心功能,但不当配置可能导致性能问题。本文详细分析了其工作原理和性能瓶颈(网络、I/O、CPU、ZK),提供了关键配置调优建议,包括控制并发度、限速修复、网络优化等。同时给出操作系统调优、监控指标和不同场景的最佳实践,强调通过平衡修复速度与系统稳定性来保障生产环境性能。最后提供了调优检查表和总结,帮助管理员实现高效数据恢复的同时不影响业务流量。原创 2025-08-08 00:58:23 · 938 阅读 · 0 评论 -
Pulsar BookKeeper Bookie 磁盘规划与性能调优详解
**摘要:Apache BookKeeper磁盘规划与性能调优指南 Bookie作为Pulsar存储核心,其I/O性能直接影响消息系统的吞吐、延迟和稳定性。关键要点包括: 磁盘分离:Journal日志需独立NVMe SSD(低延迟敏感),Entry Log建议SSD存储 配置优化:多ledger目录提升并发,journal强制刷盘确保数据安全 性能调优:合理设置GC策略(G1GC)、JVM参数(8-16GB堆内存)和网络参数 容量规划:按消息量和保留策略计算存储需求,考虑3副本冗余 监控指标:重点关注Jou原创 2025-08-08 00:57:56 · 1053 阅读 · 0 评论 -
Pulsar Ledger Offload(冷数据归档)配置指南 详解
Apache Pulsar的Ledger Offload功能可将冷数据从BookKeeper迁移至云存储(如S3/GCS/Azure),降低本地存储成本并支持长期保留。通过配置broker.conf和命名空间策略实现自动或手动触发归档,对消费者透明读取。最佳实践包括设置合理阈值、启用加密及监控失败率,需注意首次读取延迟和权限配置问题。该方案能显著降低存储成本5-10倍,同时满足合规需求。原创 2025-08-08 00:57:39 · 826 阅读 · 0 评论 -
Pulsar BookKeeper 数据恢复流程详解
摘要: Apache BookKeeper通过多层恢复机制确保Pulsar数据高可用性:1)Write Recovery处理写入中断,通过多数派确认和截断保证数据一致性;2)Ledger Recovery在读取未关闭账本时修复不一致;3)Autorecovery自动补全缺失副本,由Auditor检测并触发。支持静默损坏检测(RQ≥2)、手动运维命令及SSD优化。核心是通过写入原子性+账本一致性+副本自愈的三重保障实现故障自恢复。 (149字)原创 2025-08-08 00:57:19 · 916 阅读 · 0 评论 -
Pulsar Ledger 滚动与 GC 机制深度解析
摘要: Apache Pulsar的存储层BookKeeper通过Ledger滚动(Rolling)和垃圾回收(GC)机制保障存储效率与稳定性。Ledger滚动在大小(默认512MB)或时间(如6小时)阈值触发,关闭旧Ledger并创建新Ledger,避免单个文件过大,提升负载均衡与GC效率。GC机制通过Minor/Major Compaction回收已删除Ledger的空间,解决逻辑碎片问题,需配置合理的压缩阈值与间隔(如每日一次Major Compaction)。优化建议包括合理设置Ledger大小、启原创 2025-08-07 00:18:42 · 1021 阅读 · 0 评论 -
Pulsar 配置文件详解:broker.conf、bookkeeper.conf、zookeeper.conf
摘要: Apache Pulsar的核心组件(Broker、BookKeeper、ZooKeeper)通过配置文件(broker.conf、bookkeeper.conf、zookeeper.conf)实现关键参数调优。Broker配置服务端口、Topic策略与安全认证;BookKeeper优化存储路径、Journal性能和副本策略;ZooKeeper管理元数据存储与集群协调。三者的协调直接影响Pulsar的稳定性、性能和数据持久性,建议生产环境分离存储路径(如Journal用SSD)、启用自动清理并合理设原创 2025-08-07 00:18:27 · 900 阅读 · 0 评论 -
Pulsar `pulsar-admin` 详解:熟练管理集群、Broker、租户、命名空间、Topic、订阅、Schema、函数等
项目说明本质Pulsar Admin REST API 的 CLI 封装协议HTTP/HTTPS(连接 Broker 的 8080 端口)功能全面管理 Pulsar 元数据与运行时状态部署位置通常在任意可访问 Pulsar 集群的机器上运行权限支持 JWT、TLS 认证,基于 RBAC 控制权限工具作用类比全量管理工具:集群、租户、Topic、订阅、Schema、函数等≈ Kubernetes 的kubectl📌一句话总结是 Pulsar 的“控制台”原创 2025-08-07 00:18:07 · 956 阅读 · 0 评论 -
Pulsar 深入理解 BookKeeper:Ledger 碎片整理(AutoRecovery, Auditor)详解
Apache BookKeeper 碎片整理机制解析 本文深入分析了 Apache Pulsar 底层存储系统 BookKeeper 中的 Ledger 碎片问题及其解决方案。主要内容包括: 碎片来源:Ledger 删除不及时、Entry Log 混合存储等因素导致逻辑存储碎片 核心组件: Auditor服务:定期检查 Ledger 副本完整性 AutoRecovery服务:自动修复缺失副本 间接碎片整理机制: Entry Log 垃圾回收 Ledger 冷数据归档 Journal 和 Entry Log原创 2025-08-07 00:16:53 · 1049 阅读 · 0 评论 -
Pulsar 深入理解 BookKeeper:Bookie 故障恢复机制详解
摘要: Apache BookKeeper通过三重机制保障Pulsar数据可靠性:1)Write Recovery处理写入中断,通过多数派确认和截断确保一致性;2)Autorecovery自动修复永久故障,异步补充缺失副本;3)Ledger Recovery修复未关闭账本。结合机架感知、Read Quorum校验和SSD存储等最佳实践,实现故障自动检测与恢复,确保消息不丢失。核心思想是通过多副本协商和异步修复机制,在Bookie故障时维持数据完整性与高可用性。原创 2025-08-07 00:16:38 · 831 阅读 · 0 评论 -
Pulsar 深入理解 BookKeeper:Ensemble、WQ、AQ、RQ 详解
Apache BookKeeper 作为 Pulsar 的存储层,通过 Ensemble、Write Quorum (WQ)、Ack Quorum (AQ) 和 Read Quorum (RQ) 四个关键参数控制数据持久性、一致性和性能。Ensemble 决定参与存储的 Bookie 数量,WQ 确保写入副本数,AQ 影响响应速度,RQ 保障读取一致性。推荐生产环境采用 E=3/WQ=3/AQ=2/RQ=2 的平衡配置,并启用机架感知防止单点故障。参数设置需遵循 AQ>WQ/2 的核心规则以避免脑裂,原创 2025-08-06 00:32:04 · 856 阅读 · 0 评论 -
Pulsar 深入理解 BookKeeper:Ledger 生命周期详解
摘要: Apache BookKeeper 是 Pulsar 的核心存储引擎,其核心单元 Ledger(账本) 作为只追加的日志结构,经历 创建→写入→关闭→删除 四阶段生命周期。创建时分配唯一 ID 并选定 Bookie 副本组;写入时通过多副本机制保障高可用;关闭由大小/时间阈值触发以优化存储;删除则基于消息消费状态和保留策略。Ledger 的滚动机制支撑 Pulsar 的高吞吐与扩展性,其元数据存于 ZooKeeper,数据存于 Bookie 节点。运维中需平衡 Ledger 大小(推荐 512MB~原创 2025-08-06 00:31:37 · 1026 阅读 · 0 评论 -
Pulsar 事务消息(Transactional Messaging)详解
Pulsar事务消息(Transactional Messaging)是Pulsar提供的高级功能,支持跨Topic、分区和操作的原子性处理,实现端到端的Exactly-Once语义。核心能力包括跨Topic事务、消费-生产原子性和事务持久化。事务API通过Transaction对象管理消息发送和确认,确保关键业务场景(如订单处理、库存扣减)的数据一致性。使用时需注意性能开销、超时设置和资源消耗等限制,建议结合Schema和幂等消费者设计实现最佳实践。事务状态由Broker持久化管理,支持故障恢复,为金融等原创 2025-08-06 00:31:17 · 1070 阅读 · 0 评论 -
Pulsar 延迟消息(deliverAt / deliverAfter)详解
Pulsar延迟消息功能允许在指定时间点投递消息,支持deliverAt(绝对时间)和deliverAfter(相对时间)两种方式。该功能基于Broker内置延迟队列实现,具有毫秒级精度、持久化存储和透明消费等特点。适用于订单超时、定时提醒、重试机制等场景,相比外部调度系统更简单高效。最佳实践包括优先使用deliverAfter、控制延迟时长、确保幂等性设计等。Pulsar延迟消息是原生支持的可靠定时投递方案,无需额外依赖即可实现精准消息调度。原创 2025-08-06 00:29:56 · 960 阅读 · 0 评论 -
Pulsar Schema 应用与管理详解
Pulsar Schema 应用与管理指南 Pulsar Schema 通过强类型机制确保消息系统的数据一致性和安全性,支持多种数据格式(JSON/AVRO/Protobuf)。核心实践包括: 强Schema应用:生产/消费端直接使用结构化对象,自动序列化 兼容性策略:推荐BACKWARD模式,允许增量变更不影响旧消费者 管理工具:通过pulsar-admin实现Schema注册/查询/版本管理 最佳实践:预注册Schema、设置默认值、版本控制、多环境隔离 关键价值: 类型安全保障 跨语言数据一致性 平滑原创 2025-08-06 00:29:41 · 933 阅读 · 0 评论 -
Pulsar Key_Shared 订阅与消息顺序性详解
摘要: Apache Pulsar 通过 Key_Shared 订阅模式 实现高并发与消息顺序性的平衡。该模式基于 消息 Key 哈希路由,确保相同 Key 的消息由同一消费者顺序处理,不同 Key 的消息并行消费。生产者需显式设置 Key(如 user-id),消费者配置 sticky_hash 策略以减少重分配。相比其他订阅模式,Key_Shared 在 用户行为追踪、订单状态更新等场景 中表现优异,但需注意热点 Key 问题和消费者动态增减可能引发的短暂乱序。最佳实践包括固定消费者数量、监控 Key原创 2025-08-06 00:29:28 · 725 阅读 · 0 评论 -
Pulsar 消息确认与重试详解
Pulsar消息确认与重试机制详解 Apache Pulsar通过多种机制保障消息可靠性处理: 确认机制:支持单条(acknowledge)和累积确认(acknowledgeCumulatively),后者仅适用于Exclusive/Failover模式 否定确认:通过nack实现立即重试,可配置重试延迟 超时机制:ackTimeout作为兜底方案,自动重发未确认消息 自动重试:基于retryLetterTopic实现延迟重试,支持Shared/Key_Shared模式 死信队列:重试失败后转入DLQ,便于原创 2025-08-06 00:29:15 · 947 阅读 · 0 评论 -
pulsar-admin 与 pulsar-client 详解
摘要:Apache Pulsar 提供了两个核心命令行工具:pulsar-admin 用于集群管理(租户、命名空间、Topic、订阅等),支持元数据配置、策略设置和监控;pulsar-client 用于快速测试消息收发,支持带属性/Key的消息生产和多种消费模式。两者分别通过 REST API 和 Pulsar 协议连接集群,是开发调试和运维管理的必备工具,涵盖了从资源管理到消息流验证的全流程操作。原创 2025-08-06 00:28:06 · 723 阅读 · 0 评论 -
Pulsar Manager / Dashboard 详解
Pulsar Manager 和 Pulsar Dashboard 是 Apache Pulsar 生态中的两大可视化工具,用于集群管理与监控。 Pulsar Manager(推荐生产使用): 提供完整的租户/命名空间管理、Topic/订阅操作、消息查看、多集群支持和 JWT 认证,适合复杂运维场景。 Pulsar Dashboard(轻量级): 基础监控功能,支持查看 Broker/Topic 状态和消费进度,适合开发测试环境。 最佳实践:生产环境使用 Pulsar Manager + Grafana 集原创 2025-08-06 00:27:47 · 785 阅读 · 0 评论 -
Apache Pulsar Schema 详解
Apache Pulsar Schema 详解:Pulsar Schema 是消息数据的结构化契约,支持多种格式(JSON/Avro/Protobuf等),实现类型安全与兼容性管理。核心功能包括自动序列化、跨语言支持、Schema版本控制,并内置注册中心。提供多种兼容策略(BACKWARD/FORWARD等),支持Schema演进。通过Schema API可直接发送/接收POJO对象,无需手动编解码。还支持Key-Value Schema等高级特性,确保数据完整性并简化开发流程。原创 2025-08-06 00:27:34 · 785 阅读 · 0 评论 -
Pulsar Reader 详解
Apache Pulsar Reader 摘要 Pulsar Reader 是一种无订阅的消息读取机制,可直接从 Topic 任意位置(如最早/最新消息、指定 MessageId 或时间戳)读取数据。与 Consumer 不同,Reader 不维护游标、不支持 ACK,且完全独立于订阅系统,适用于消息回放、审计、数据迁移等临时性任务。核心优势包括:自由选择起始位置、不干扰现有消费者、支持 Schema 反序列化。典型场景包括调试历史消息、数据备份和离线分析,但需注意其不支持消息确认和长期消费的限制。最佳实践原创 2025-08-06 00:27:21 · 688 阅读 · 0 评论 -
Pulsar Consumer 详解
摘要:Apache Pulsar Consumer详解 Apache Pulsar Consumer是消息系统的核心组件,负责从Topic接收和处理消息。它具有以下关键特性: 灵活订阅模式:支持独占(Exclusive)、共享(Shared)、故障转移(Failover)和键共享(Key_Shared)四种订阅方式 高效消息处理:提供同步Receive和异步Listener两种消息接收模式 可靠确认机制:包含正确认(Ack)、负确认(Nack)和超时重发三种消息确认方式 高级功能:支持消息重试、死信队列(D原创 2025-08-06 00:27:07 · 1033 阅读 · 0 评论