自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1150)
  • 资源 (1)
  • 收藏
  • 关注

原创 Coursera吴恩达《深度学习》课程总结(全)

01 神经网络和深度学习(Neural Networks and Deep Learning)1-1 深度学习概论主要介绍:主要对深度学习进行了简要概述。首先,我们使用房价预测的例子来建立最简单的单个神经元组成的神经网络模型。然后,我们将例子复杂化,建立标准的神经网络模型结构。接着,我们从监督式学习入手,介绍了不同的神经网络类型,包括Standard NN,CNN和RNN。不同的神经网络模型适合处理不同类型的问题。对数据集本身来说,分为结构化数据和非结构化数据。近些年来,深度学习对非结构化数据的处理

2021-09-24 19:01:44 41057 4

原创 集智书童 | 微小目标检测新标杆 | DPNet首创动态神经网络范式,微小目标检测效率跃升35%!

本文提出动态池化网络(DPNet),首创将动态神经网络思想应用于微小目标检测领域。针对传统方法存在的计算冗余和特征分布不一致问题,DPNet通过三大创新实现突破:1)引入可调节的下采样因子动态调整特征图分辨率;2)设计自适应归一化模块(ANM)解决多尺度训练中的特征分布差异;3)开发轻量级下采样因子预测器(DFP)实现输入感知的资源分配。

2025-07-02 16:03:44 629

原创 Coggle数据科学 | JointRank:基于重叠分块与PageRank进行单次并行重排序

针对信息检索系统中大规模候选集排序的挑战,JetBrains研究员提出JointRank方法。该方法通过精心设计重叠分块实现单次并行推理:将文档分成多个重叠块,并行使用列表式排序模型处理各块,构建竞技图反映文档间相对优劣,最后用PageRank等算法重建全局排名。实验证明,该方法在TRECDL-2019等数据集上显著优于传统滑动窗口排序等技术,既保持FullContextListwise的低延迟(2秒),又将nDCG@10指标从61.76提升至69.10。

2025-07-02 15:30:41 604

原创 OpenCV与AI深度学习 | CVPR 2025 | 工业异常检测新突破!复旦&腾讯打造Real-IAD D³多模态数据集

复旦大学联合腾讯等机构推出工业异常检测新突破Real-IADD³数据集,包含8450个多模态样本(RGB、伪3D、高精度3D点云),精度达0.002毫米。基于该数据集提出的D³M多模态融合方法在CVPR2025发表,检测性能显著优于单/双模态方法。这是Real-IAD系列第二篇工作,首篇已被CVPR2024收录。该研究为工业质检提供了更可靠解决方案,数据集已开源。

2025-07-01 14:06:01 726

原创 Datawhale | 本地模型接入本地MCP实践!保姆教程来了(必须收藏!)

本文详细介绍了如何将本地大语言模型接入MCP(ModelContextProtocol)框架实现工具调用能力。MCP协议由Anthropic公司提出,通过客户端-服务器架构使LLM能够调用各类外部工具(如天气查询、股票信息等)。文章对比了Stdio和SSE两种连接模式,重点演示了使用FastMCP库创建本地MCP服务(端口4200)并与vLLM部署的Qwen模型(端口8000)交互的全过程。

2025-07-01 10:45:33 870

原创 周报 | 25.6.23-25.6.29文章汇总

本周技术文章汇总涵盖多个AI与计算机视觉领域的热点内容:YOLOv13系列文章占据主导,包括清华大学提出的超图增强检测模型和江大白对YOLO系列10年演变的深度解析;Transformer目标检测、MobileCLIP轻量级分类方案等创新算法获得关注;Python实用技巧如datetime模块和omegaconf库也入选周报。此外,ICLR2025的4D场景生成技术、人工智能代理分级实现等前沿研究同样值得关注。这些优质内容将持续更新,欢迎读者推荐学习资源共同进步。

2025-06-30 10:23:08 273

原创 ChallengeHub | DeepSeek 背后的数学原理:深入探究群体相对策略优化 (GRPO)

本文介绍了DeepSeek团队提出的群体相对策略优化(GRPO)算法,这是一种用于增强大型语言模型推理能力的强化学习方法。GRPO通过比较同一问题生成的多个回答来进行相对评估,避免了传统PPO算法对单独价值模型的依赖,从而降低了计算成本。文章详细解析了GRPO目标函数的三个关键组成部分:策略比值、裁剪目标和KL散度正则化,并通过教学类比解释了其工作原理。

2025-06-30 10:20:00 600

原创 python | omegaconf,一个非常nice的 Python 库!

在现代软件开发中,配置管理是一个关键问题。Python的omegaconf库提供了一个灵活且强大的配置系统,它支持从多个来源加载配置,包括YAML文件、命令行参数和环境变量。通过其层次化的配置结构和强大的插值功能,omegaconf能够优雅地处理各种复杂的配置需求,特别适合于大型项目和机器学习应用。

2025-06-28 18:35:50 296

原创 AI新智力 | AI|大模型入门(四):检索增强生成(RAG)

“仅凭Prompt工程根本无法满足人们日益增长的大模型需要,鉴于大模型本身诸多缺陷,比如不能及时更新知识、上下文有限等,人们开始给大模型加入插件,引入向量数据库,把数据索引进向量数据库,再召回数据,再做Prompt工程,这样就可以使用最新的知识和更准确的知识,这种方法叫做检索增强生成(RAG)。”

2025-06-28 18:19:18 778

原创 机器之心 | ICLR 2025 Spotlight | 让城市「动」起来!DynamicCity突破4D大场景生成技术边界

上海人工智能实验室等机构提出DynamicCity框架,突破4D大场景生成技术。该研究通过HexPlane特征降维和扩散模型,实现了动态城市场景的高效建模,支持轨迹引导、指令驱动等可控生成方式。相比现有静态生成方法,DynamicCity在生成质量、训练速度和内存消耗方面取得显著进步,为自动驾驶仿真等应用提供了更真实的虚拟环境。该成果已被ICLR2025接收为Spotlight论文。

2025-06-27 18:17:41 1315

原创 数据派THU | 独家|5 个难度级别的人工智能代理(含完整代码实现)

《AI代理设计的五个难度级别:从基础工具到系统架构》 本文分享了构建人工智能代理的五个渐进式难度级别,每个级别都配有完整代码实现。第一级是基础工具调用代理;第二级添加知识库和短期记忆;第三级引入长期记忆和推理能力;第四级实现多代理协作;第五级则升级为完整的代理系统架构。作者通过自身失败案例强调,成功的代理设计关键在于扎实的基础架构,而非盲目追求复杂性。文章特别指出,清晰的边界、可靠的推理和有效的记忆机制是构建有效AI代理的核心要素,建议开发者循序渐进地根据实际问题需求增加系统复杂度。

2025-06-27 17:37:30 978

原创 江大白 | 2万字深度长文,拆解YOLOv1-YOLOv13的十年全面进化!(推荐收藏!)

YOLO目标检测算法十年发展与未来展望 YOLO(You Only Look Once)系列模型自2015年问世以来,彻底革新了实时目标检测领域。本文系统梳理了从YOLOv1到最新YOLOv13的十年演进历程,揭示了各版本在精度、速度和计算效率方面的突破性进展。文章深入分析了YOLO在自动驾驶、医疗影像、安防监控、工业质检和智慧农业等五大领域的变革性应用,并探讨了未来发展方向,包括多模态融合、边缘计算优化以及与AGI系统的整合。

2025-06-26 14:01:40 1522

原创 python | Python开发者必备:datetime模块完全使用指南与实战技巧

在软件开发中,时间处理是一个不可避免的重要环节。无论是日志记录、数据分析、任务调度还是业务逻辑实现,都需要精确而可靠的时间处理功能。Python的datetime模块作为标准库中最重要的时间处理工具,提供了全面而强大的时间操作能力。

2025-06-26 13:58:18 972

原创 小白学视觉 | YOLOv13来了!清华大学提出基于超图增强的实时目标检测

YOLOv13通过引入自适应超图计算,有效地增强了模型对全局高阶视觉关系的建模能力。结合创新的FullPAD信息流范式和深度可分离卷积的轻量化设计,该模型在保持高效率的同时,实现了当前最优的检测性能。

2025-06-25 16:26:57 712

原创 集智书童 | YOLOv13震撼发布 | 超图高阶建模+轻量化模块,保证实时性的情况下,检测精度再创新高!

YOLOv13重磅升级:超图高阶建模+轻量化模块实现检测精度新突破 计算机视觉领域迎来重大突破,YOLOv13实时目标检测器正式发布。该模型通过创新性地引入超图高阶建模技术,显著提升了复杂场景下的检测性能。核心亮点包括: 提出HyperACE机制,采用自适应超图计算取代传统手工建模,实现高阶语义相关性精准捕捉; 首创FullPAD全流程聚合-分发范式,优化信息流传递效率; 基于深度可分离卷积设计轻量化模块,在保持精度的同时降低30%参数量。

2025-06-25 16:24:18 1084

原创 周报 | 25.6.16-25.6.22文章汇总

AI领域迎来多项突破,英伟达发布SeNaTra空间分组层革新语义分割性能;MiniMax-Remover实现视频去物新SOTA;YOLO11与OBB旋转检测模型提升目标检测能力。此外,DeepSeekV3+R1微调工具上线降低硬件要求,GNN与LangGraph结合推进情感分析技术。Python元类应用、OpenCV保险丝识别等实战内容同样值得关注。更多前沿技术进展与实用教程详见各技术博客平台。

2025-06-24 16:35:33 432

原创 极市平台 | 大白话用Transformer做Object Detection

本文介绍了基于Transformer的目标检测方法DETR及其改进方向。DETR通过端到端检测机制和输入输出空间解耦等优势,实现了与传统CNN检测器不同的范式。文章分析了DETR收敛慢的原因在于object query与图像特征初始对齐困难,并总结了Deformable DETR、Anchor DETR等改进工作通过限制采样区域加速收敛的方法。最后探讨了query数量优化、位置编码改进等未来研究方向,为Transformer在目标检测领域的应用提供了深入见解。

2025-06-24 16:31:09 779

原创 OpenCV与AI深度学习 | MobileCLIP:一种轻量级的零样本图像分类解决方案(介绍 + 代码演示)

MobileCLIP:轻量级零样本图像分类解决方案 摘要:MobileCLIP是OpenAI开发的CLIP模型优化版本,专为资源受限设备设计。该模型通过将图像与文本描述关联,实现无需大规模训练即可识别新物体的零样本分类能力。相比原版CLIP,MobileCLIP具有更小的模型尺寸、更高的计算效率以及更低的延迟,特别适合移动设备、物联网等场景。文章详细介绍了MobileCLIP的工作原理,并提供了完整的代码实现方案,包括环境设置、模型加载、图像分类和可视化流程。

2025-06-23 17:38:47 671

原创 江大白 | DefMamba新型视觉模型,多尺度Backbone与Mamba,创新多任务视觉算法!(附论文及源码)

本文介绍了一种新型视觉基础模型DefMamba,通过创新的可变形扫描策略解决了现有视觉Mamba模型依赖固定扫描顺序导致的结构信息丢失问题。DefMamba结合多尺度Backbone和可变形Mamba模块,动态调整扫描路径以聚焦关键区域。实验表明,该模型在ImageNet分类、COCO检测/分割和ADE20K语义分割等任务中均取得领先性能,超越现有SSM方法,并与CNN和Transformer模型保持竞争力。

2025-06-23 17:19:52 805

原创 OpenCV与AI深度学习 | OpenCV无缝融合应用--指定目标颜色改变(附C++源码)

OpenCV无缝融合应用:指定目标颜色改变技术 摘要:本文介绍了利用OpenCV中colorChange函数实现图像指定目标颜色自然改变的技术。该算法基于Perez的论文,通过调整RGB三通道乘积因子(建议值0.5-2.5)实现目标区域颜色转换,同时保留边缘细节。实现步骤包括:1)用selectROI框选目标;2)通过滑动条动态调整参数;3)调用colorChange函数处理。

2025-06-22 15:42:11 575

原创 机器之心 | DeepSeek V3+R1满血微调工具上线!一键启动,硬件要求降10倍

ColossalAI发布开源大模型后训练工具箱,支持DeepSeekV3/R1满血版671B参数的微调,提供完整的强化学习工具链。该工具支持混合精度训练和多种硬件加速,可将微调硬件需求降低10倍,仅需24个H100/H800 GPU或32个Ascend910B NPU。通过LoRA优化和灵活的并行策略,用户可低成本高效完成私有模型定制。工具还包含强化学习验证功能,以Qwen2.5-3B模型为例展示了GRPO算法的训练效果,支持自定义奖励函数设计。该工具箱现已在GitHub开源。

2025-06-22 15:39:00 451

原创 ChallengeHub | 如何微调推理大模型?以Qwen3/DeepSeek-R1为例

《如何高效微调推理大模型:三种方法对比》摘要 本文探讨了将传统指令微调迁移到推理大模型的三种实用方法。以DeepSeek-R1和Qwen3为例,方法1通过推理大模型将指令数据蒸馏为思维链数据(如Chinese-DeepSeek-R1-Distill-data-110k);方法2利用现有COT数据集(如medical-o1-reasoning-SFT)直接构造训练数据;方法3则直接使用"素"指令数据进行微调,实测32B推理模型可超越72B对话模型。

2025-06-21 04:45:00 1675

原创 OpenCV与AI深度学习 | OpenCV实现保险丝颜色识别(附源码)

本文介绍了使用OpenCV实现保险丝颜色识别的技术方案。首先将图像转换到HSV色彩空间,分离出饱和度(S)通道进行阈值处理(60-255),再通过轮廓查找定位每个保险丝区域。对每个区域提取色调(H)通道,根据不同颜色对应的H值范围(橙色10-30、红色0-10、蓝色125-162等)统计像素数量来判断颜色类型。代码实现了五种保险丝颜色(橙、红、蓝、黄、绿)的自动识别,并在识别结果上标注颜色名称和标记轮廓。该方法源自Halcon例程的OpenCV移植,适用于工业场景中的颜色分类应用。

2025-06-21 00:45:00 277

原创 江大白 | 目标检测YOLOv12算法来袭,更高性能、更快速度!(附论文及源码)

YOLOv12算法创新性地引入区域注意力模块和残差高效层聚合网络,显著提升目标检测性能与速度。实验表明,各规模模型均优于当前主流算法(YOLOv6/v8/v9/v10/v11)和RT-DETR系列,在保持低计算量的同时实现更高mAP值。例如,YOLOv12-S以21.4GFLOPs达到48.0mAP,推理速度仅2.61ms/图像。该研究通过优化注意力机制架构,突破传统CNN限制,为实时目标检测提供高效解决方案。论文及代码已开源,推动CV领域技术进步。

2025-06-20 17:40:52 889

原创 python | Python元类与抽象基类的实战应用

在Python的面向对象编程中,抽象基类(Abstract Base Class,简称ABC)是一个强大的特性,它为接口定义和类型检查提供了有力的支持。本文将深入探讨Python的ABC模块,剖析其实现原理,并通过实际示例展示其在工程实践中的应用。

2025-06-20 17:33:20 884

原创 自动驾驶之心 | DETR系列大盘点 | 端到端Transformer目标检测算法汇总!(建议收藏)

《Transformer目标检测算法盘点:DETR系列研究进展》 文章总结了基于Transformer的端到端目标检测算法发展脉络。从开山之作DETR开始,分析了其核心创新:用Transformer实现集预测,消除了NMS等手工组件。针对DETR存在的收敛慢、小目标检测差等问题,后续研究主要从三个方向改进: 1)优化注意力机制(如Deformable DETR引入稀疏采样) 2)融入空间先验知识(如Conditional DETR加入位置约束) 3)改进匹配策略(如DN-DETR提出去噪训练) 。

2025-06-19 16:46:54 1487

原创 Coggle数据科学 | Kaggle赛题解析:识别数据引用与分类

Make Data Count (MDC) 是一个全球性的、由社区驱动的倡议,旨在建立开放标准化的指标,用于评估和奖励研究数据的重用和影响力。通过倡导和基础设施项目,MDC 旨在将数据作为主要的研究成果加以认可,促进数据在不同数据社区中的共享和重用。通过突出和重视数据的贡献,可以推动更协作、透明和高效的科学实践,从而推动创新和进步。然而,目前科学数据的价值被严重低估,尽管它们是发现和创新的基础。

2025-06-19 16:32:15 782

原创 江大白 | 目标检测之旋转目标:YOLO11 与定向边界框(OBB)旋转检测!(附多种旋转检测模型)

OBB特别适用于目标并非垂直或水平放置的场景,例如:航拍视频中转弯的汽车、桌面上倾斜放置的书籍,或医学影像中旋转角度不一的肿瘤。在X光片中,器官、骨骼、肿瘤等目标常呈现不同角度以及不规则形状,由于OBB可以旋转以匹配目标角度,因此在定位和测量上比传统的水平边界框更为准确,这对于诊断和治疗方案的制定至关重要。预训练的YOLO11 OBB模型(如YOLO11n-obb)在DOTAv1数据集上训练,该数据集包含航空影像,标注了多类以不同角度和方向出现的目标,如飞机、船只和网球场等。

2025-06-18 21:46:29 745

原创 AI生成未来 | 视频去物“魔法橡皮擦”来了!MiniMax-Remover:新SOTA方法告别CFG,6步搞定

视频目标移除中的核心挑战模型容易生成幻觉物体(hallucinated objects)存在视觉伪影(visual artifacts)现有方法的局限性依赖计算成本高的采样过程严重依赖无分类器引导(Classifier-Free Guidance, CFG)推理速度慢,效率低。

2025-06-18 21:46:09 1189

原创 数据派THU | 基于图神经网络的自然语言处理:融合LangGraph与大型概念模型的情感分析实践

本文介绍了一种融合LangGraph与大型概念模型(LCMs)的情感分析实践方法。针对传统NLP技术难以处理复杂文本关系的局限,该方法结合了LCMs的概念级语义理解能力和图神经网络(GNN)的结构化关系建模优势。文章详细阐述了混合符号-语义架构的设计原理,包括符号化图表示构建、语义嵌入生成和GNN分析流程。通过LangGraph框架实现的多模块处理管道,系统能够对多渠道客户反馈进行情感分类和主题聚类分析。实验结果表明,该方法在保持语义理解深度的同时,提高了文本间关系建模的精确度,为企业级文本分析提供了更全面

2025-06-17 07:45:00 777

原创 极市平台 | Prefix Grouper:加速GRPO训练,即插即用,长上下文场景计算效率跃升!

《PrefixGrouper:高效GRPO训练新方法》摘要:针对长上下文场景下GRPO训练存在的计算冗余问题,研究者提出PrefixGrouper算法。该算法采用"共享前缀前向计算"策略,将共享前缀仅输入一次,通过创新的分组注意力机制实现计算优化。实验证明该方法在保持训练等效性的同时,显著降低FLOPs和内存占用,尤其适用于前缀远长于响应的场景。该技术即插即用,兼容现有Transformer框架,代码和报告已开源。

2025-06-17 06:00:00 1468

原创 周报 | 25.6.9-25.6.15文章汇总

【CSDN技术周报:6月前沿AI研究与应用汇总】本周精选12篇优质技术文章,涵盖大模型安全、多模态研究、模型部署等热点领域。重点包括:DeepSeek多模态模型解析、伯克利大学TULIP模型突破、ONNX部署实战经验、10种CoT增强方法等。同时提供Python实用技巧(缓存机制、上下文管理)及医学影像分割等应用案例。所有文章均来自CSDN技术社区,适合开发者深度学习与参考。文末鼓励读者互动交流,持续推动技术社区成长。

2025-06-16 16:42:23 179

原创 集智书童 | 语义分割新高度 | 英伟达提出SeNaTra空间分组层革新Backbone,性能效率双超Swin Transformer

英伟达提出SeNaTra:革新视觉Backbone的语义分割新范式 本文介绍了英伟达提出的SeNaTra(Semantic-Native Transformer),通过创新的空间分组层取代传统的均匀下采样操作,实现了Backbone级的原生分割能力。SeNaTra的核心创新在于:1)设计基于内容感知的动态分组层,根据语义边界自适应分配token;2)构建具有层次化分组能力的视觉Transformer,无需额外分割头即可生成高质量Mask;3)采用局部到密集的分组策略,平衡计算效率与分割精度。实验表明,SeN

2025-06-16 16:27:23 842

原创 ChallengeHub | LongRefiner:解决长文档检索增强生成的新思路

《LongRefiner:提升长文档检索生成效率的新方法》针对RAG系统处理长文档时面临的信息杂乱和计算成本高两大痛点,提出创新解决方案。该方法采用三步策略:首先进行双层查询分析,区分局部/全局查询类型;其次将文档结构化处理为XML格式;最后通过自适应文档精炼机制,结合局部与全局视角筛选关键内容。实验表明,该方法性能提升9%以上,同时降低10倍标记使用量和4倍延迟。研究证实该方法组件缺一不可,且在处理长文档时表现尤为突出,为智能客服、知识问答等场景提供了高效解决方案。

2025-06-15 17:28:04 716

原创 python | Python缓存机制:functools.lru_cache实现

在Python编程中,性能优化是一个常见且重要的挑战。当函数需要进行复杂计算或执行耗时的I/O操作时,如果能够缓存先前计算的结果,就可以显著提高程序的执行效率。Python标准库中的functools.lru_cache装饰器提供了一种简单而强大的缓存机制,本文将深入探讨其实现原理、使用方法及优化技巧。

2025-06-15 17:22:48 846

原创 AI生成未来 | 从零构建大模型之Transformer公式解读

《Transformer模型的数学原理与结构解析》摘要:本文详细解析了Transformer模型的数学原理和结构组成。Transformer通过自注意力机制处理序列数据,其核心由编码器-解码器框架构成。编码器采用多头注意力机制和全连接前馈网络,解码器则增加了掩蔽多头注意力机制。文章用25个数学公式阐述了注意力计算、层归一化、残差连接和位置编码等关键技术原理。具体分析了查询-键-值矩阵的注意力计算、前馈网络运算以及编解码器的完整处理流程,为理解Transformer工作机制和实现提供了理论基础。

2025-06-14 00:30:00 939

原创 DeepSeek-R1模型部署全解析:从1.5B到671B,硬件需求与适用场景详解!

本文详细解析了DeepSeek-R1模型从1.5B到671B参数版本的本地化部署方案,针对Windows、Linux和Mac三大系统提供了硬件配置、部署工具及成本评估。重点区分了满血版和蒸馏版的不同特性,推荐个人用户选择1.5B-7B轻量级模型,中小企业可考虑14B-32B量化版,科研机构则需专业服务器部署671B超大规模模型。文章还指出了显存陷阱、量化选择等常见问题,强调要结合性能、成本和需求进行理性选择,为不同用户提供了实用的部署建议。

2025-06-14 00:15:00 1485

原创 ChallengeHub | 10 种最新的思维链(Chain-of-Thought, CoT)增强方法

【前沿研究】10种思维链增强方法推动大模型推理能力突破。最新成果包括:1)防御式CoT提升抗误导能力;2)混合CoT自适应选择推理路径;3)跨模态CoT协同文本图像生成;4)推测式CoT降低66%推理延迟;5)协作式CoT支持用户交互编辑;6)语音CoT优化非主流语言处理;7)检索增强CoT融合知识图谱;8)无监督视觉CoT通过偏好反馈学习;9)主动学习CoT提升自动评分准确率24.5%;10)长链CoT解构优化训练效率。这些创新方法显著拓展了思维链技术的应用边界。

2025-06-13 17:14:40 802

原创 python | Python 上下文管理器:自定义数据库连接池

上下文管理器作为Python语言的重要特性,为资源管理提供了优雅且安全的解决方案。在企业级应用开发中,数据库连接管理是一个关键的技术挑战,不当的连接处理可能导致连接泄漏、性能下降甚至系统崩溃。通过结合上下文管理器协议与数据库连接池技术,能够构建高效、可靠的数据库访问层,确保连接资源的正确获取和释放。

2025-06-13 17:07:58 616

原创 arXiv每日学术速递 | QuantUNet:基于Brevitas库量化U-Net,结合自定义损失函数,助力医学肿瘤分割在资源受限设备实时低功耗部署 !

QuantUNet:量化U-Net助力医学肿瘤分割的低功耗部署 本文提出QuantUNet,一种针对资源受限设备的优化U-Net量化版本。通过Brevitas库进行量化感知训练,将模型精度降至平均4.24位,模型大小减少8倍,同时保持94.25%的验证准确率(仅比浮点模型低1.89%)。研究采用结合二元交叉熵、Dice损失和位宽损失的自定义损失函数,显著优化了模型效率与分割精度的平衡。该方法为可穿戴医疗设备中的实时肿瘤分割提供了高效解决方案,特别适合FPGA等低功耗硬件部署。实验表明,量化后的模型在保持高精

2025-06-11 17:19:28 1013

全国省-市-区城市经纬度汇总.csv

简介:全国主要区县城市经纬度汇总。我国省级行政区划分:23个省、5个自治区、4个直辖市、2个特别行政区,合计34个省级行政区。 省:河北省、山西省、辽宁省、吉林省、黑龙江省、江苏省、浙江省、安徽省、福建省、江西省、山东省、河南省、湖北省、湖南省、广东省、海南省、四川省、贵州省、云南省、陕西省、甘肃省、青海省、台湾省。 自治区:内蒙古自治区,广西壮族自治区,宁夏回族自治区,新疆维吾尔自治区,西藏自治区。 直辖市:北京市,天津市,上海市,重庆市。 特别行政区:香港特别行政区,澳门特别行政区。

2020-09-09

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除