
大模型专栏
文章平均质量分 91
大模型相关专栏,例如GPT、LLaMA和PaLM这三大LLM家族等
双木的木
种一棵树最好的时间是十年前,其次是现在。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Coggle数据科学 | 大模型理解股市“图”与“文”:VISTA模拟专业股票操盘手 | Arxiv 论文
《VISTA框架:多模态大模型提升股票预测准确率》摘要 VISTA创新性地结合股票走势图与历史价格数据,通过视觉-语言模型(VLM)进行多模态分析。研究表明,相比纯文本模型,VISTA的预测性能最高可提升89.83%。该框架模拟专业交易员认知方式,通过折线图识别技术形态(如阻力位、下降三角形),弥补了数值数据在模式识别上的局限。实验采用五组LLM-VLM模型对比,结果表明视觉输入显著降低40%-80%的MSE误差。虽然思维链提示在多数情况下有效,但模型表现仍受计算资源和黑箱特性限制。该研究为金融时间序列分析原创 2025-07-08 17:14:18 · 732 阅读 · 0 评论 -
极市平台 | ICCV 2025 | 让任意图像‘活’起来,颠覆视频生成!AnyI2V:点云、草图都能秒变动画!
AnyI2V是一种创新的图像到视频生成框架,能够将点云、草图等任意模态图像作为首帧输入,结合用户定义的运动轨迹生成动画。该框架通过结构保持特征注入、跨帧对齐和动态语义掩码生成三项核心技术,无需额外训练即可实现高效灵活的视频生成。实验表明,AnyI2V在多样化场景中展现出卓越性能,支持多模态混合输入和内容编辑,显著提升了视频生成的可控性和多样性。该方法为3D数据生成、风格化视频等应用提供了新的可能性,未来有望进一步优化运动一致性和复杂场景处理能力。原创 2025-07-08 17:07:05 · 789 阅读 · 0 评论 -
数据派THU | 一文通透DeepSeek V2——通俗理解多头潜在注意力MLA:改进MHA,从而压缩KV缓存,提高推理速度
《DeepSeekV2技术解析:MLA与DeepSeekMoE的创新突破》 本文深入解析了DeepSeekV2的两大核心技术突破: 多头潜在注意力(MLA):通过低秩键值联合压缩技术,显著降低推理时的KV缓存开销(仅需传统MHA的2.25组GQA缓存),同时保持优于MHA的性能表现。MLA创新性地解耦了信息存储与旋转编码,解决了RoPE与低秩压缩的兼容性问题。 DeepSeekMoE架构:采用细粒度专家分割和共享专家隔离策略,在相同激活参数规模下大幅超越传统MoE。配合设备限制路由和三层平衡损失机制(专家级原创 2025-07-07 16:56:32 · 670 阅读 · 0 评论 -
菜鸟学Python | 10个免费的DeepSeek使用平台
本文介绍了10个可免费使用DeepSeek AI模型的平台,包括: 1)官方版本(含R1/V3模型和联网功能) 2)硅基流动(新用户送14元体验额度) 3)硅基流动+Chatbox组合(可保存聊天记录) 4)科技部超算互联网(提供多个蒸馏版模型) 5)纳米搜索(含专线和满血版) 6)各大云平台(华为云、阿里云等) 7)华为小艺助手 8)秘塔AI搜索 9)Poe与Lambda海外平台 10)英伟达(邮箱注册即可使用) 文章对各平台特点和使用方法进行了简要说明,为用户提供多样化选择方案。原创 2025-07-05 16:54:38 · 689 阅读 · 0 评论 -
AI小智 | Agent 部署全解析:LangGraph团队实战洞察
智能Agent部署面临长时执行、异步协同和流量突发等独特挑战,需具备一键上线、多端API支持、水平扩展、状态持久化、可视化调试和多租户权限六大核心能力。文章提出通用部署架构方案:通过CI/CD流水线实现一键化部署,提供多协议接口支持弹性交互,采用分布式数据库和Redis缓存保障状态持久化,并构建可视化监控与团队协作平台。强调Agent商业化落地需基础设施与运维能力并重,建议开发者定期演练故障恢复流程,构建完整的部署运维体系。原创 2025-07-05 16:45:17 · 816 阅读 · 0 评论 -
kaggle竞赛宝典 | 智能体框架:11 个顶级 AI Agent 框架!
【AI Agent框架指南】本文介绍了11个顶级开源AI Agent框架,帮助开发者构建自主智能系统。这些框架从简单聊天机器人发展为支持多步推理、工具使用和协作的复杂平台。核心框架包括:LangChain(模块化设计)、微软AutoGen(多Agent协作)、CrewAI(团队模拟)、Semantic Kernel(企业级方案)等。评估标准涵盖易用性、扩展性和社区支持。新兴趋势显示多Agent系统和简化开发接口受关注。选择框架需考虑项目需求、编程语言和集成能力。原创 2025-07-03 16:44:18 · 954 阅读 · 0 评论 -
Coggle数据科学 | JointRank:基于重叠分块与PageRank进行单次并行重排序
针对信息检索系统中大规模候选集排序的挑战,JetBrains研究员提出JointRank方法。该方法通过精心设计重叠分块实现单次并行推理:将文档分成多个重叠块,并行使用列表式排序模型处理各块,构建竞技图反映文档间相对优劣,最后用PageRank等算法重建全局排名。实验证明,该方法在TRECDL-2019等数据集上显著优于传统滑动窗口排序等技术,既保持FullContextListwise的低延迟(2秒),又将nDCG@10指标从61.76提升至69.10。原创 2025-07-02 15:30:41 · 789 阅读 · 0 评论 -
OpenCV与AI深度学习 | CVPR 2025 | 工业异常检测新突破!复旦&腾讯打造Real-IAD D³多模态数据集
复旦大学联合腾讯等机构推出工业异常检测新突破Real-IADD³数据集,包含8450个多模态样本(RGB、伪3D、高精度3D点云),精度达0.002毫米。基于该数据集提出的D³M多模态融合方法在CVPR2025发表,检测性能显著优于单/双模态方法。这是Real-IAD系列第二篇工作,首篇已被CVPR2024收录。该研究为工业质检提供了更可靠解决方案,数据集已开源。原创 2025-07-01 14:06:01 · 833 阅读 · 0 评论 -
Datawhale | 本地模型接入本地MCP实践!保姆教程来了(必须收藏!)
本文详细介绍了如何将本地大语言模型接入MCP(ModelContextProtocol)框架实现工具调用能力。MCP协议由Anthropic公司提出,通过客户端-服务器架构使LLM能够调用各类外部工具(如天气查询、股票信息等)。文章对比了Stdio和SSE两种连接模式,重点演示了使用FastMCP库创建本地MCP服务(端口4200)并与vLLM部署的Qwen模型(端口8000)交互的全过程。原创 2025-07-01 10:45:33 · 1157 阅读 · 0 评论 -
周报 | 25.6.23-25.6.29文章汇总
本周技术文章汇总涵盖多个AI与计算机视觉领域的热点内容:YOLOv13系列文章占据主导,包括清华大学提出的超图增强检测模型和江大白对YOLO系列10年演变的深度解析;Transformer目标检测、MobileCLIP轻量级分类方案等创新算法获得关注;Python实用技巧如datetime模块和omegaconf库也入选周报。此外,ICLR2025的4D场景生成技术、人工智能代理分级实现等前沿研究同样值得关注。这些优质内容将持续更新,欢迎读者推荐学习资源共同进步。原创 2025-06-30 10:23:08 · 304 阅读 · 0 评论 -
ChallengeHub | DeepSeek 背后的数学原理:深入探究群体相对策略优化 (GRPO)
本文介绍了DeepSeek团队提出的群体相对策略优化(GRPO)算法,这是一种用于增强大型语言模型推理能力的强化学习方法。GRPO通过比较同一问题生成的多个回答来进行相对评估,避免了传统PPO算法对单独价值模型的依赖,从而降低了计算成本。文章详细解析了GRPO目标函数的三个关键组成部分:策略比值、裁剪目标和KL散度正则化,并通过教学类比解释了其工作原理。原创 2025-06-30 10:20:00 · 782 阅读 · 0 评论 -
AI新智力 | AI|大模型入门(四):检索增强生成(RAG)
“仅凭Prompt工程根本无法满足人们日益增长的大模型需要,鉴于大模型本身诸多缺陷,比如不能及时更新知识、上下文有限等,人们开始给大模型加入插件,引入向量数据库,把数据索引进向量数据库,再召回数据,再做Prompt工程,这样就可以使用最新的知识和更准确的知识,这种方法叫做检索增强生成(RAG)。”原创 2025-06-28 18:19:18 · 783 阅读 · 0 评论 -
数据派THU | 独家|5 个难度级别的人工智能代理(含完整代码实现)
《AI代理设计的五个难度级别:从基础工具到系统架构》 本文分享了构建人工智能代理的五个渐进式难度级别,每个级别都配有完整代码实现。第一级是基础工具调用代理;第二级添加知识库和短期记忆;第三级引入长期记忆和推理能力;第四级实现多代理协作;第五级则升级为完整的代理系统架构。作者通过自身失败案例强调,成功的代理设计关键在于扎实的基础架构,而非盲目追求复杂性。文章特别指出,清晰的边界、可靠的推理和有效的记忆机制是构建有效AI代理的核心要素,建议开发者循序渐进地根据实际问题需求增加系统复杂度。原创 2025-06-27 17:37:30 · 982 阅读 · 0 评论 -
OpenCV与AI深度学习 | MobileCLIP:一种轻量级的零样本图像分类解决方案(介绍 + 代码演示)
MobileCLIP:轻量级零样本图像分类解决方案 摘要:MobileCLIP是OpenAI开发的CLIP模型优化版本,专为资源受限设备设计。该模型通过将图像与文本描述关联,实现无需大规模训练即可识别新物体的零样本分类能力。相比原版CLIP,MobileCLIP具有更小的模型尺寸、更高的计算效率以及更低的延迟,特别适合移动设备、物联网等场景。文章详细介绍了MobileCLIP的工作原理,并提供了完整的代码实现方案,包括环境设置、模型加载、图像分类和可视化流程。原创 2025-06-23 17:38:47 · 688 阅读 · 0 评论 -
江大白 | DefMamba新型视觉模型,多尺度Backbone与Mamba,创新多任务视觉算法!(附论文及源码)
本文介绍了一种新型视觉基础模型DefMamba,通过创新的可变形扫描策略解决了现有视觉Mamba模型依赖固定扫描顺序导致的结构信息丢失问题。DefMamba结合多尺度Backbone和可变形Mamba模块,动态调整扫描路径以聚焦关键区域。实验表明,该模型在ImageNet分类、COCO检测/分割和ADE20K语义分割等任务中均取得领先性能,超越现有SSM方法,并与CNN和Transformer模型保持竞争力。原创 2025-06-23 17:19:52 · 823 阅读 · 0 评论 -
机器之心 | DeepSeek V3+R1满血微调工具上线!一键启动,硬件要求降10倍
ColossalAI发布开源大模型后训练工具箱,支持DeepSeekV3/R1满血版671B参数的微调,提供完整的强化学习工具链。该工具支持混合精度训练和多种硬件加速,可将微调硬件需求降低10倍,仅需24个H100/H800 GPU或32个Ascend910B NPU。通过LoRA优化和灵活的并行策略,用户可低成本高效完成私有模型定制。工具还包含强化学习验证功能,以Qwen2.5-3B模型为例展示了GRPO算法的训练效果,支持自定义奖励函数设计。该工具箱现已在GitHub开源。原创 2025-06-22 15:39:00 · 454 阅读 · 0 评论 -
ChallengeHub | 如何微调推理大模型?以Qwen3/DeepSeek-R1为例
《如何高效微调推理大模型:三种方法对比》摘要 本文探讨了将传统指令微调迁移到推理大模型的三种实用方法。以DeepSeek-R1和Qwen3为例,方法1通过推理大模型将指令数据蒸馏为思维链数据(如Chinese-DeepSeek-R1-Distill-data-110k);方法2利用现有COT数据集(如medical-o1-reasoning-SFT)直接构造训练数据;方法3则直接使用"素"指令数据进行微调,实测32B推理模型可超越72B对话模型。原创 2025-06-21 04:45:00 · 1681 阅读 · 0 评论 -
极市平台 | Prefix Grouper:加速GRPO训练,即插即用,长上下文场景计算效率跃升!
《PrefixGrouper:高效GRPO训练新方法》摘要:针对长上下文场景下GRPO训练存在的计算冗余问题,研究者提出PrefixGrouper算法。该算法采用"共享前缀前向计算"策略,将共享前缀仅输入一次,通过创新的分组注意力机制实现计算优化。实验证明该方法在保持训练等效性的同时,显著降低FLOPs和内存占用,尤其适用于前缀远长于响应的场景。该技术即插即用,兼容现有Transformer框架,代码和报告已开源。原创 2025-06-17 06:00:00 · 1474 阅读 · 0 评论 -
数据派THU | 基于图神经网络的自然语言处理:融合LangGraph与大型概念模型的情感分析实践
本文介绍了一种融合LangGraph与大型概念模型(LCMs)的情感分析实践方法。针对传统NLP技术难以处理复杂文本关系的局限,该方法结合了LCMs的概念级语义理解能力和图神经网络(GNN)的结构化关系建模优势。文章详细阐述了混合符号-语义架构的设计原理,包括符号化图表示构建、语义嵌入生成和GNN分析流程。通过LangGraph框架实现的多模块处理管道,系统能够对多渠道客户反馈进行情感分类和主题聚类分析。实验结果表明,该方法在保持语义理解深度的同时,提高了文本间关系建模的精确度,为企业级文本分析提供了更全面原创 2025-06-17 07:45:00 · 782 阅读 · 0 评论 -
ChallengeHub | LongRefiner:解决长文档检索增强生成的新思路
《LongRefiner:提升长文档检索生成效率的新方法》针对RAG系统处理长文档时面临的信息杂乱和计算成本高两大痛点,提出创新解决方案。该方法采用三步策略:首先进行双层查询分析,区分局部/全局查询类型;其次将文档结构化处理为XML格式;最后通过自适应文档精炼机制,结合局部与全局视角筛选关键内容。实验表明,该方法性能提升9%以上,同时降低10倍标记使用量和4倍延迟。研究证实该方法组件缺一不可,且在处理长文档时表现尤为突出,为智能客服、知识问答等场景提供了高效解决方案。原创 2025-06-15 17:28:04 · 720 阅读 · 0 评论 -
DeepSeek-R1模型部署全解析:从1.5B到671B,硬件需求与适用场景详解!
本文详细解析了DeepSeek-R1模型从1.5B到671B参数版本的本地化部署方案,针对Windows、Linux和Mac三大系统提供了硬件配置、部署工具及成本评估。重点区分了满血版和蒸馏版的不同特性,推荐个人用户选择1.5B-7B轻量级模型,中小企业可考虑14B-32B量化版,科研机构则需专业服务器部署671B超大规模模型。文章还指出了显存陷阱、量化选择等常见问题,强调要结合性能、成本和需求进行理性选择,为不同用户提供了实用的部署建议。原创 2025-06-14 00:15:00 · 1516 阅读 · 0 评论 -
ChallengeHub | 10 种最新的思维链(Chain-of-Thought, CoT)增强方法
【前沿研究】10种思维链增强方法推动大模型推理能力突破。最新成果包括:1)防御式CoT提升抗误导能力;2)混合CoT自适应选择推理路径;3)跨模态CoT协同文本图像生成;4)推测式CoT降低66%推理延迟;5)协作式CoT支持用户交互编辑;6)语音CoT优化非主流语言处理;7)检索增强CoT融合知识图谱;8)无监督视觉CoT通过偏好反馈学习;9)主动学习CoT提升自动评分准确率24.5%;10)长链CoT解构优化训练效率。这些创新方法显著拓展了思维链技术的应用边界。原创 2025-06-13 17:14:40 · 813 阅读 · 0 评论 -
arXiv每日学术速递 | QuantUNet:基于Brevitas库量化U-Net,结合自定义损失函数,助力医学肿瘤分割在资源受限设备实时低功耗部署 !
QuantUNet:量化U-Net助力医学肿瘤分割的低功耗部署 本文提出QuantUNet,一种针对资源受限设备的优化U-Net量化版本。通过Brevitas库进行量化感知训练,将模型精度降至平均4.24位,模型大小减少8倍,同时保持94.25%的验证准确率(仅比浮点模型低1.89%)。研究采用结合二元交叉熵、Dice损失和位宽损失的自定义损失函数,显著优化了模型效率与分割精度的平衡。该方法为可穿戴医疗设备中的实时肿瘤分割提供了高效解决方案,特别适合FPGA等低功耗硬件部署。实验表明,量化后的模型在保持高精原创 2025-06-11 17:19:28 · 1017 阅读 · 0 评论 -
集智书童 | 伯克利大学提出 TULIP | 重塑CLIP,跨模态对比+重建正则化双驱动,1B参数横扫SOTA
尽管CLIP和SigLIP等图像-文本对比模型近期取得了成功,但这些模型在需要高保真图像理解的视觉中心任务上往往表现不佳,例如计数、深度估计和细粒度物体识别。这些模型通过执行语言对齐,往往优先考虑High-Level语义而非视觉理解,从而削弱了它们的图像理解能力。另一方面,专注于视觉的模型在处理视觉信息方面表现出色,但在理解语言方面存在困难,限制了它们在语言驱动任务上的灵活性。原创 2025-06-11 17:15:08 · 732 阅读 · 0 评论 -
极市平台 | DeepSeek多模态能力起底!一探究竟Janus 系列模型:解耦统一多模态理解和生成模型的视觉编码
目标检测模型End to End推理方案的探索和尝试,说到推理和部署,其实怎么也绕不开ONNX,ONNX在成立的初衷就是希望解决神经网络在不同的训练框架、推理框架上的转换问题。所以本期的内容会从如何玩转ONNX出发,唠一唠,我们在目标检测部署遇到的那些事情。因为篇幅以及有部分内容我不太了解不敢乱说的关系,我会在这里对开放麦的内容做一点顺序和内容上进行一点的调整,我也会加入自己的一些经历和看法,让大家看得更加轻松有趣一点。原创 2025-06-10 17:42:31 · 914 阅读 · 0 评论 -
开源技术人 | 大模型及智能体安全前沿研究综述(建议收藏!)
大模型和智能体的安全是一个动态演进的挑战领域。近期的研究进展令人鼓舞地展现了各种创新思路,从底层机理到顶层系统均有突破。然而,随着模型能力的增长和应用的扩张,我们也必须保持警惕,不断完善安全策略。未来的AI安全研究需要跨学科结合(机器学习、安全工程、人因科学、法规政策等),需要攻防同步推进,更需要产业界和学术界的紧密合作。只有这样,我们才能在充分释放人工智能潜能的同时,将其风险控制在可接受范围之内,确保AI技术造福人类而非伤害人类。相信在全社会的共同努力下,建立“可信任且安全”的大模型与智能体将逐步从愿景走原创 2025-06-09 21:32:12 · 1225 阅读 · 0 评论 -
集智书童 | 武汉大学提出 SimROD | 突破检测瓶颈!GGE模块+通道优化,效率超越SOTA方法
在本工作中,作者提出了SimROD,这是一种简单而有效的提升RAW数据目标检测性能的方法。SimROD引入了一种具有四个可学习参数的简化解决方案——全局伽马增强(GGE),在保持低模型复杂度的同时实现了有竞争力的性能。原创 2025-06-08 15:43:38 · 941 阅读 · 0 评论 -
江大白 | 全网最全2.6W字综述,深入浅出大模型核心技术:微调、推理与优化指南!
本文全面综述了大语言模型(LLM)的核心技术,包括模型架构、训练方法、微调技术和优化策略。首先介绍了Transformer架构作为LLM的基础,以及预训练面临的巨大计算挑战。重点探讨了参数高效微调(PEFT)技术,如适配器、LoRA、QLoRA等方法,它们能在减少计算资源的同时保持模型性能。文章详细分析了多种量化技术(GPTQ、NF4、GGML)和模型压缩方法(剪枝、知识蒸馏),这些技术显著降低了模型部署成本。此外,还介绍了推理优化策略和提示工程技术(如思维链CoT、ReAct等),帮助提升模型输出质量。本原创 2025-06-05 17:07:37 · 1171 阅读 · 0 评论 -
Ai学习的老章 | 刚刚,阿里发布Qwen3 技术报告,还有官方量化模型文件
阿里发布Qwen3技术报告并推出官方量化模型版本(GGUF、AWQ、GPTQ),支持通过Ollama等工具本地部署。量化技术显著降低硬件需求,如32B模型从需4张4090显卡降至1张。实测显示,单卡运行32B-AWQ版本时仍可能遭遇显存不足问题,需调整参数;双卡配置下推理速度约18t/s。报告推荐了优化推理的采样参数设置,包括温度值、输出长度等,并强调标准化输出格式的重要性。量化技术使大模型在消费级硬件上的部署成为可能。原创 2025-06-05 16:52:09 · 1258 阅读 · 0 评论 -
Datawhale | Text Diffusion,来了!
本文介绍了Diffusion模型在语言生成领域的最新进展,重点分析了LLaDA系列工作如何验证Diffusion模型在8B规模下与自回归模型(AR)相当的性能。作者李崇轩团队通过RADD和LLaDA等研究,证明了离散扩散模型(MDM)在去掉时间参数t后,能够简化模型结构并提升性能。当前Diffusion模型展现出三大优势:并行推理、双向上下文建模和测试时可扩展性。虽然工业界已推出GeminiDiffusion等产品,但学术界更关注基础研究,包括解决变长生成等技术难题。该领域仍存在广阔探索空间,开源生态原创 2025-06-04 16:09:23 · 892 阅读 · 0 评论 -
CVHub | VLM-R³:从一次性理解到动态聚焦的视觉推理进化
本文提出VLM-R³框架,旨在提升视觉语言模型在复杂推理任务中的动态视觉聚焦能力。通过区域识别(Region)、推理(Reasoning)和优化(Refinement)三个核心模块,模型能够实现"观察-推理-再观察"的闭环流程。研究贡献包括:1)构建VLIR数据集,提供细粒度图文交错监督;2)提出R-GRPO强化学习策略,优化视觉决策能力。实验表明,该方法在ScienceQA等任务上显著优于基线模型14.33%,尤其在需要精细视觉理解的场景表现突出。消融研究验证了图文交错思维链和强化学习原创 2025-06-04 16:06:43 · 1083 阅读 · 0 评论 -
集智书童 | RL颠覆视觉传统 | VisionReasoner 首提统一框架,检测/分割/计数3类任务超越YOLO-World等专用模型
大型视觉语言模型展现出处理多样化视觉感知任务的内生能力。在本文中介绍了VisionReasoner,一个能够在共享模型内推理和解决多种视觉感知任务的统一框架。具体而言,通过设计新颖的多目标认知学习策略和系统化的任务重构,VisionReasoner增强了其推理能力以分析视觉输入,并在统一框架内处理多样化的感知任务。该模型在生成结构化推理过程后,才会根据用户 Query 提供所需的输出。原创 2025-06-03 17:23:21 · 1192 阅读 · 0 评论 -
集智书童 | DeCLIP突破CLIP局限 | 解耦注意力+双蒸馏机制,开集检测/分割全面超越DINO/SAM
DeCLIP突破CLIP局限,提出解耦注意力与双蒸馏机制,显著提升开集检测和分割性能。研究发现CLIP在密集预测任务中表现不佳,因其注意力机制导致特征缺乏局部区分性和空间一致性。DeCLIP通过解耦注意力模块,分别优化;内容;特征(增强局部区分性)和;上下文;特征(保持空间相关性),并采用自蒸馏和VFM蒸馏的双引导机制。实验表明,DeCLIP在目标检测、语义分割等任务中全面超越DINO/SAM等基线模型,ViT-B/16版本性能媲美更大模型。原创 2025-06-02 00:15:00 · 1644 阅读 · 0 评论 -
江大白 | 新版DeepSeek-R1正式开源发布!(附项目地址)
DeepSeek-R1-0528重磅开源,时隔四个月实现飞跃升级。思考更缜密,编程更强悍,长时推理表现惊艳,全面对标SOTA开源模型,堪称开源圈的又一巅峰之作。就在昨天凌晨,新版DeepSeek-R1正式开源了!DeepSeek-R1-0528模型权重已上传到HuggingFace,不过模型卡暂未更新。原创 2025-06-02 00:45:00 · 1414 阅读 · 0 评论 -
Datawhale | RAG 挑战赛冠军方案解析:从数据解析到多路由器检索的工程实践,推荐阅读!(建议收藏)
本文介绍了RAG挑战赛冠军方案的系统设计与实现。该方案从PDF解析开始,通过优化文本清理和表格预处理技术,构建了高效的检索系统。关键创新点包括:1)采用多路由器架构实现精准查询路由;2)使用LLM重排序模块提升检索质量;3)通过结构化输出和精细提示词工程确保答案格式准确。系统通过解析100份公司年报(共1.5万页),在2.5小时内完成数据库构建,最终以98%准确率回答100个随机问题。方案证明:通过系统化组件优化和细致任务理解,即使使用小型模型也能构建高质量的RAG系统。代码已开源供参考学习。原创 2025-05-31 09:29:22 · 1059 阅读 · 0 评论 -
新智元 | OpenAI震撼发布o3/o4-mini,直逼视觉推理巅峰!首用图像思考,十倍算力爆表(图文并茂!)
满血版o3和o4-mini深夜登场,首次将图像推理融入思维链,还会自主调用工具,60秒内破解复杂难题。尤其是,o3以十倍o1算力刷新编程、数学、视觉推理SOTA,接近「天才水平」。此外,OpenAI还开源了编程神器Codex CLI,一夜爆火。原创 2025-05-30 16:49:49 · 564 阅读 · 0 评论 -
Coggle数据科学 | 行业落地分享:蚂蚁TuGraph图数据库,学习分享不是广告
本文介绍了蚂蚁集团TuGraph图数据库在AI检索领域的创新应用。作为领先的图数据管理平台,TuGraph通过顶点和边构建复杂关系网络,有效管理企业数据。文章重点阐述了GraphRAG技术,该技术结合图数据库与生成式AI,通过多跳推理和知识增强提升检索质量。相比传统RAG,GraphRAG能更好地表示实体关系,支持动态知识扩展,在医疗、科研等场景中展现出显著优势。该技术框架包含查询分解、图检索、知识增强和生成优化等环节,为智能问答系统提供了更精准的知识支持。原创 2025-05-30 16:46:32 · 653 阅读 · 0 评论 -
Ai学习的老章 | 阿里Qwen3 全部情报汇总,本地部署指南,性能全面超越 DeepSeek R1
阿里通义千问Qwen3系列开源模型震撼发布,包含6款Dense模型和2款MoE模型,规模从0.6B到235B全覆盖。其中旗舰模型Qwen3-235B-A22B性能超越DeepSeek R1,部署成本仅为其35%;30B MoE模型可在消费级显卡运行。创新性引入混合思维模式,支持手动控制推理深度。该系列在代码、数学等基准测试中表现优异,支持119种语言,训练数据达36万亿token。提供多种本地部署方案(Ollama、vLLM等),并优化了Mac和iPhone端运行能力。作为国内首个混合推理模型,Qwen3实原创 2025-05-29 15:26:37 · 863 阅读 · 0 评论 -
OpenCV与AI深度学习 | 实战 | 用Google Gemini实现目标检测(完整代码+步骤)
多模态 LLM 的一个更被低估的功能是它们能够生成边界框来检测对象。我记得我们向一些朋友展示您可以使用 Moondream 和 Qwen VL 检测物体,他们非常震撼。原创 2025-05-28 17:09:26 · 791 阅读 · 0 评论 -
GiantPandaLLM | 在SGLang中使用reasoning模型(建议收藏!)
在本文档中,我们将为希望快速上手SGLang的人提供一个实用资源。SGLang是一个高性能的LLM推理引擎,可以很好地扩展到大量GPU(https://lmsys.org/blog/2025-05-05-large-scale-ep/)。我们将使用新的Qwen3(https://github.com/QwenLM/Qwen3)模型系列,它在SGLang上获得了首日支持。在这篇博文中,我们将使用8B模型。如果你使用较小的GPU,请查看一些较小的Qwen模型,它们同样出色。原创 2025-05-28 13:27:12 · 899 阅读 · 0 评论