
Mamba
文章平均质量分 82
寸先生的牛马庄园
专注AI,热爱文学
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
nnMamba用于糖尿病视网膜病变检测测试
对比之前的几种mamba,针对糖尿病视网膜病变数据集,采用同样的训练参数:300 Epochs,32 Batch Size。这里我只是在增加了一层Residual Block提取,验证集最好的ACC是96.53%如果继续优化层的设置,应该会有更好的提升,这里就不继续做了。原创 2024-10-25 11:16:38 · 502 阅读 · 0 评论 -
nnMamba原理和代码调测
这个实现的就是分类模型,我对原文中图像和源码进行了一定的标注,方便理解,论文中针对的3D图像,我这里按照2D的简单写,不影响理解。对照源码和图像可以发现,源码中是每组3个Res-Mamba块,每组的输出进行了分辨率维度的池化,然后拼接reshape后送入mamba,图中还有一个池化拼接后的特征和经过mamba的特征加和的操作图中没有体现。这个类似SENET中的SE分支计算加权系数,贴了一个SENet中的图,实现的就是下面红框部分。对应的是论文中的下图,但不知道是不是我下载的论文版本不对,感觉这个图有问题。原创 2024-10-24 16:33:04 · 1105 阅读 · 0 评论 -
MambaVision原理和源码调测
后面可以看到代码实现也是按照N/2写的。原创 2024-10-15 16:27:10 · 3054 阅读 · 1 评论 -
【论文阅读笔记】Mamba模型代码理解
Mamba模型代码实现及理解原创 2024-04-07 08:47:58 · 28904 阅读 · 30 评论 -
【论文阅读笔记】SegMamba: Long-range Sequential Modeling Mamba For 3D Medical Image Segmentation
论文提出 3D 医学图像分割Mamba模型,与基于 Transformer 的方法相比,SegMamba 在状态空间模型的整个体积特征建模方面表现出色,体积特征的分辨率为 64×64×64。在BraTS2023数据集上进行验证。图片已经画得很清楚,都是基本块组成,只是将transformer块中的CNN换成了mamba块。在BraTS2023 数据集实验效果。原创 2024-01-26 08:12:15 · 1796 阅读 · 4 评论 -
【长文阅读】MAMBA作者博士论文<MODELING SEQUENCES WITH STRUCTURED STATE SPACES>-Chapter6 Combining Orthogonal and
HIPPO指定了一类特定的矩阵。原创 2024-01-22 11:38:35 · 2308 阅读 · 0 评论 -
【长文阅读】MAMBA作者博士论文<MODELING SEQUENCES WITH STRUCTURED STATE SPACES>-Chapter5 HIPPO as Orthogonal SSMs
如果一个状态空间模型(SSM)由。原创 2024-01-22 10:54:13 · 1811 阅读 · 1 评论 -
长文阅读】MAMBA作者博士论文<MODELING SEQUENCES WITH STRUCTURED STATE SPACES>-Chapter4 HIPPO
给定。原创 2024-01-21 16:01:39 · 3004 阅读 · 1 评论 -
【长文阅读】MAMBA作者博士论文<MODELING SEQUENCES WITH STRUCTURED STATE SPACES>-Chapter3 Computing SSMs
Chapter 3 Computing Structured SSMsGu A. Modeling Sequences with Structured State Spaces[D]. Stanford University, 2023.本文是MAMBA作者的博士毕业论文,为了理清楚MAMBA专门花时间拜读这篇长达330页的博士论文,由于知识水平有限,只能尽自己所能概述记录,并适当补充一些相关数学背景,欢迎探讨与批评指正。内容多,分章节更新以免凌乱。第3章讨论了结构化状态空间模型(SSM),特别是S原创 2024-01-21 10:35:48 · 2004 阅读 · 0 评论 -
【长文阅读】MAMBA作者博士论文<MODELING SEQUENCES WITH STRUCTURED STATE SPACES>-Chapter2 Sequence Modeling with S
离散化后的SSM被定义为一个序列到序列的映射。原创 2024-01-19 23:41:48 · 1890 阅读 · 0 评论 -
【长文阅读】MAMBA作者博士论文<MODELING SEQUENCES WITH STRUCTURED STATE SPACES>-Chapter1
这篇文档的摘要介绍了在机器学习领域的显著进步,特别是在序列模型方面,这些模型对深度学习在各种科学应用中的成功至关重要。尽管目前的方法取得了成功,但它们在处理复杂的序列数据(如涉及长期依赖性的数据)时存在限制,例如需要大量的特定任务专业化、计算效率低下等问题。为了解决这些问题,论文介绍了一种使用状态空间模型的新方法。这些模型灵活、理论基础扎实、计算效率高,并且在多种数据类型和应用中表现出色。它们扩展了标准深度序列模型(如循环神经网络和卷积神经网络)的功能。原创 2024-01-19 17:53:39 · 1094 阅读 · 0 评论 -
【论文阅读笔记】U-Mamba: Enhancing Long-range Dependency for Biomedical Image Segmentation
在四个不同的任务上进行了广泛的实验:CT和MR图像中的3D腹部器官分割、内窥镜图像中的器械分割以及显微镜图像中的细胞分割。将CNN的局部特征提取能力与状态空间序列模型(SSM)的长程依赖性能力相结合。U-Mamba采用了一个编码器-解码器(encoder-decoder)的网络结构,这种结构能够同时捕获局部特征和长程上下文。 U-Mamba块的核心是结合了卷积层和SSM的混合块。本文对Mamba结构用于图像领域进行了简单的探索,就结构来说没有特别多创新,就是插入了Mamba块,但可以遇见下一个坑的到来。原创 2024-01-18 11:18:17 · 6570 阅读 · 1 评论