最后两个多月怎么突破自己?

考研倒计时上面的天数越来越短了,很多同学随着天数的所剩无几变得如同热锅上的蚂蚁,焦急,没有目标,甚至复习计划也乱了。在这最后的冲刺期,大家一定要战胜的其实是自己,如何在短短时间里突破自己,一起看看吧。

一、遇到瓶颈的表现


1.拖延,拖延,拖延

由于复习到了疲惫期,很多同学给自己制定的目标、规划,在执行的时候总出问题。本来计划早上7点钟去图书馆,硬是醒来后躺床上不起来。计划今天数学看两个小节,才看了不到一半,休息了,晚上再看,然后就没有晚上了。看了一天书,因为一些事情,隔两天再复习。一再的拖延让自己的本有的信心都没了!

2.质疑自己的学习能力

研友们在备考后期时遇到瓶颈,诸如单词背了记不住、专业课看不懂、做题错误率极高等问题,非常打击大家考研的信心,感到无力复习。考生们往往会质疑自己的学习能力,比其他同学更担心自己失败,陷入犹豫徘徊。

3.受外界干扰严重

一部分同学经常关注其他同学的复习进度和复习安排,无论其他人进度如何,总感觉自己是落后的,失却信心。还有一部分同学因为室友并不考研,常常受到打扰,不仅会跟室友发生不快,更会感觉前途渺茫。

二、备考类突破建议

1、10月

10月见证实力的时刻到了。各位考生要拿出近几年的考试真题,测试自身实力,以便准确锁定报考院校。虽然可以报考3所院校,但最终现场确认各位只能选择一所院校,而且专硕调剂难,因此报考要慎重。

为了更准确测试自身水平,各位可以先用高质量的模拟试卷测试,逐步熟悉考试场合,初步建立应试策略,再进行真题测试,效果更佳。

2、11月

一年的学习只为考场上那一套试卷,考研归根结底要通过试卷检验成果。因此考前2个半月,各位要集中精力模拟,包括真题模拟和仿真模拟。当然,做题不是目的,通过做题发现问题解决问题是根本!

真题试卷可分解为三项工作:第一,真题模拟;第二,分析试卷,错题找到错因,对考点和知识查缺补漏,同时分析考试过程,优化应试策略;第三,部分题重做,重做错题、不确定的题(蒙对的、有疑问的),重做有快速解法的真题,熟悉更优解析方法、技巧,培养快速解题习惯。第四,当真题试卷全部做完,数学部分要按章节模块重新做一到两遍,直到每个考点的方法等都烂熟于心,直到每个题都毫无问题、轻松解题为止。仿真模拟。仅仅真题试卷当然不够,仿真模拟必不可少。


3、12月

进入考试月,这三周,各位需继续保持每周真题+模拟的节奏,可适当减量,但绝对不能断档(每年都会有惨剧发生),要保持做题的题感。

考试月最重要的不是学知识或做题,这些在之前各位已经做的很好了。最重要的是这两件事:一是查缺补漏。二是调整心态。考试考的是知识,考的更是综合素质,心态很重要,考前适当放松、调整心态,有利于各位平稳应对考试,更好的发挥能力。

三、突破建议

1、意志力极为重要。很强的意志力是一个人不断突破自我的坚强保证。既然选择了一个目标,就要不断地努力。相信自己,可以克服各种困难。

2、懂得经常向那些值得自己学习,而且能够学习的人身上汲取一些有益的精神动力或者思维方式、做事方法。

3、自信。你绝不能因为自己有不足而自卑,你应该保持一个这样的心态:我今天坚持了,我又有进步和提高了,我为自己感到骄傲,为自己的进步而欣慰,我要继续努力!

4、寻求帮助,明确目标。遇到复习难题,大家首先应该寻求帮助,可以询问学长学姐。切忌搁置迷茫,不求甚解。

5、科学复习,稍安勿躁。我们不能否认有些科目确实很难理解或者很难记忆。面对这些,大家要积极调整复习的方式,比如利用思维导图串联知识点,熟悉真题明晰专业课难点重点等等。

6、远离手机。手机在不知不觉耗费着我们的时间,也在不知不觉消耗着我们的体力。一切不以学习为目的的看手机,对于2018考研同学来说,都是在作死。请你远离手机,少看手机多看书,这是高效学习的第一步。

7、饮食调整。学习是静坐,但却是消耗能量的。不论你是男同学,还是女同学,这段冲刺阶段,都很有必要吃一些高能量的事物,保证自己的体力能够支撑你考完试。

8、咖啡提神。睡梦不足是很正常的事,不必要感到慌乱,请相信,你的竞争对手也是睡眠不足的。这个时候,可以通过咖啡来提神。一些不能喝咖啡,咖啡有副作用的说法,都不具有科学性。

9、拒绝熬夜。学习时间紧,这是普遍现象。如果白天完不成的学习任务,一定要通过熬夜来完成吗?你要知道,熬夜会形成恶性循环。过度熬夜的后果就是,白天精神状态不佳,这样的做法是得不偿失的。

10、合理地放松锻炼。考研复习过程中,大家适当放松,劳逸结合,但不能过度放松。适当放松可以恢复精力,保持状态;过度放松则会丢失掉一直保持着的复习状态,再找回来是要花不少时间和精力成本。

来源于网络

20考研的QQ群,有各个学校的考研资料,欢迎加入

群号是 984844252


您还可以在以下平台找到我们

你点的每个在看,我都认真当成了喜欢

资源下载链接为: https://pan.quark.cn/s/1bfadf00ae14 “STC单片机电压测量”是一个以STC系列单片机为基础的电压检测应用案例,它涵盖了硬件电路设计、软件编程以及数据处理等核心知识点。STC单片机凭借其低功耗、高性价比和丰富的I/O接口,在电子工程领域得到了广泛应用。 STC是Specialized Technology Corporation的缩写,该公司的单片机基于8051内核,具备内部振荡器、高速运算能力、ISP(在系统编程)和IAP(在应用编程)功能,非常适合用于各种嵌入式控制系统。 在源代码方面,“浅雪”风格的代码通常简洁易懂,非常适合初学者学习。其中,“main.c”文件是程序的入口,包含了电压测量的核心逻辑;“STARTUP.A51”是启动代码,负责初始化单片机的硬件环境;“电压测量_uvopt.bak”和“电压测量_uvproj.bak”可能是Keil编译器的配置文件备份,用于设置编译选项和项目配置。 对于3S锂电池电压测量,3S锂电池由三节锂离子电池串联而成,标称电压为11.1V。测量时需要考虑电池的串联特性,通过分压电路将高电压转换为单片机可接受的范围,并实时监控,防止过充或过放,以确保电池的安全和寿命。 在电压测量电路设计中,“电压测量.lnp”文件可能包含电路布局信息,而“.hex”文件是编译后的机器码,用于烧录到单片机中。电路中通常会使用ADC(模拟数字转换器)将模拟电压信号转换为数字信号供单片机处理。 在软件编程方面,“StringData.h”文件可能包含程序中使用的字符串常量和数据结构定义。处理电压数据时,可能涉及浮点数运算,需要了解STC单片机对浮点数的支持情况,以及如何高效地存储和显示电压值。 用户界面方面,“电压测量.uvgui.kidd”可能是用户界面的配置文件,用于显示测量结果。在嵌入式系统中,用
<think>嗯,我接到了用户关于大疆智图API并行任务限制的问题。用户之前提到过参考站内引用关于数字孪生数据处理的困难,但这似乎不是当前的核心问题。用户的核心诉求很明确:想突破大疆智图API的两个并发任务限制。这个问题需要拆解来看。大疆智图的官方文档确实限制API调用只能同时运行两个任务,这在处理大批量数据时会造成效率瓶颈。我回忆之前给用户的建议是采用分布式队列方案,现在需要更系统地梳理解决方案。从技术实现角度看,突破并发限制可以有多个层次:在应用层可以通过任务调度算法优化资源分配;在系统层可以搭建工作流引擎实现动态调度;还可以部署多套智图环境实现硬件级并行。每种方案都有其适用场景和实现成本。考虑到用户可能是开发人员,我需要重点说明技术实现细节。分布式任务队列的搭建可能需要引入Redis或RabbitMQ,而Kubernetes部署方案则需要一定的容器化经验。同时也要提醒用户注意授权许可和资源消耗问题。用户没有说明具体应用场景,所以最好给出针对性建议:建筑测绘用户可能更适合任务链优化,而大型无人机机队运营商可能需要集群方案。后续提问设置也要引导用户明确需求细节,比如是否涉及跨地域协同、硬件资源条件等关键信息。最后要确保所有技术描述准确无误,特别是关于DJITerraAPI的调用限制说明,避免给出可能违反服务条款的解决方案。在保持专业性的同时,用清晰的中文让用户理解各种技术选项的优劣。</think> 针对大疆智图 API 的两项并行任务限制问题,以下是系统级解决方案(基于工作流调度和资源优化): --- ### **核心限制分析** 1. **API协议限制** 官方文档明确限制单个API实例最多并行处理2个建模任务[^1],该限制旨在保障系统稳定性。 2. **硬件资源瓶颈** 单个服务器的计算资源(CPU/GPU/内存)可能在并行任务超过2个时成为性能瓶颈。 --- ### **突破并行限制的解决方案** #### **1. 分布式任务队列方案** ```python # 使用Celery + Redis搭建分布式任务调度系统 from celery import Celery app = Celery('dji_terra_tasks', broker='redis://localhost:6379/0') @app.task def run_dji_task(task_id): # 调用大疆API提交任务(自动遵守2任务/实例限制) dji_api.submit_task(task_id) # 任务分发逻辑(示例) task_ids = [101, 102, 103, 104] # 待处理任务列表 for task_id in task_ids: run_dji_task.delay(task_id) # 任务进入分布式队列 ``` - **实现原理**: 通过消息队列(Redis/RabbitMQ)动态分配任务到多个**独立部署的大疆智图实例** - **资源要求**: 每新增1个智图实例(物理机或虚拟机)可增加2个并行任务额度 #### **2. 容器化集群方案** ```docker # Docker Compose部署多实例集群 version: '3' services: dji-instance1: image: dji-terra:latest environment: API_KEY: ${API_KEY_1} gpus: 1 # 指定GPU资源 dji-instance2: image: dji-terra:latest environment: API_KEY: ${API_KEY_2} gpus: 1 dji-instance3: # 灵活扩展实例 ... ``` - **优势**: Kubernetes集群管理可实现: - 自动负载均衡 - 故障转移(单个实例崩溃时任务迁移) - 按需弹性伸缩(峰值时自动扩容实例) #### **3. 混合优化策略(低资源场景)** ```mermaid graph LR A[待处理任务队列] --> B{任务优先级判断} B -->|高优先级| C[立即提交至API] B -->|普通任务| D[缓存队列] D -->|延迟提交| E[API空闲检测] E -->|当前任务<2| F[触发新任务] ``` - **关键技术点**: - 实时监控API任务状态(通过`GET /api/v1/task/status`) - 智能调度算法(最短作业优先/SJF算法优化吞吐量) --- ### **实施注意事项** 1. **授权许可** 每个智图实例需独立授权,商业授权费用按实例数计算[^1] 2. **硬件成本** GPU计算型服务器推荐配置: - NVIDIA RTX 5000 Ada * 2 - 64GB DDR5 RAM - NVMe SSD存储池 3. **维护复杂度** 集群方案需额外部署监控系统(如Prometheus+Granfana) --- ### **性能对比** | 方案 | 最大并行任务数 | 硬件成本系数 | 部署复杂度 | |---------------------|----------------|-------------|-----------| | 单实例原生API | 2 | 1.0x | ★☆☆☆☆ | | 分布式队列(3实例) | 6 | 3.5x | ★★★☆☆ | | Kubernetes集群方案 | N*2 (N为节点数)| 4.0x+ | ★★★★★ | > 注:成本系数以单服务器为基准(含硬件+授权)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值