Aggressive cows (POJ No.2456)--二分法例题

本文探讨了农夫约翰如何利用二分搜索法,将牛分配到牛舍中,以最大化相邻牛之间的距离。面对有限数量的牛舍和牛,通过定义搜索范围,不断调整可能的最大最小距离,最终找到满足条件的最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意

农夫约翰搭了一间有;NNN间牛舍的小屋。牛舍排在一条线上,第 iii号牛舍在 xix_ixi的位置。但是他的 MMM头牛对小屋很不满意,因此经常互相攻击。约翰为了防止牛之间互相伤害,因此决定把每头牛都放在离其他牛尽可能远的牛舍。也就是要最大化最近的两头牛之间的距离。

  • 2≤N≤1000002\leq N\leq 1000002N100000
  • 2≤M≤N2\leq M\leq N2MN
  • 0≤xi≤1090\leq x_i\leq 10^90xi109

思路

类似的最大化最小值或者最小化最大值的问题,通常用二分搜索法就可以很好地解决。我们定义l=0,r=max⁡xil=0,r=\max{x_i}l=0,r=maxxi,在[l,r][l,r][l,r]中进行二分搜索,将mid=(l+r)>>1mid=(l+r)>>1mid=(l+r)>>1作为最大的最小距离进行判定,看此时是否能够将这些牛全部安放,如果可以lll继续右移,否则rrr左移

代码

#include<iostream>
#include<iomanip>
#include<cmath>
#include<string.h>
#include<queue>
#include<vector>
#include<map>
#include<algorithm>
using namespace std;

#define Max 100005
#define ll long long
#define inf 1000005
#define p pair<ll,ll>

ll n, m, ans = 0;
ll len[Max];

bool cnt(ll mid) {
	ll pos = len[1], ans = 1;
	for (ll i = 2; i <= n; i++) {
		if (len[i]-pos >= mid) {//距离可以容纳一头牛
			pos = len[i]; ans++;
		}
	}
	return ans >= m;
}

int main() {
	ll l = 0, r = 0;
	cin >> n >> m; len[0] = 0;
	for (ll i = 1; i <= n; i++) { cin >> len[i]; r = max(len[i], r); }
	sort(len + 1, len + n + 1);
	while (r > l + 1) {
		ll mid = (r + l) >> 1;
		if (cnt(mid)) l = mid; //以mid为最大的最小距离,能否满足m个牛的要求
		else r = mid;
	}
	cout << l << endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值