题意
农夫约翰搭了一间有;NNN间牛舍的小屋。牛舍排在一条线上,第 iii号牛舍在 xix_ixi的位置。但是他的 MMM头牛对小屋很不满意,因此经常互相攻击。约翰为了防止牛之间互相伤害,因此决定把每头牛都放在离其他牛尽可能远的牛舍。也就是要最大化最近的两头牛之间的距离。
- 2≤N≤1000002\leq N\leq 1000002≤N≤100000
- 2≤M≤N2\leq M\leq N2≤M≤N
- 0≤xi≤1090\leq x_i\leq 10^90≤xi≤109
思路
类似的最大化最小值或者最小化最大值的问题,通常用二分搜索法就可以很好地解决。我们定义l=0,r=maxxil=0,r=\max{x_i}l=0,r=maxxi,在[l,r][l,r][l,r]中进行二分搜索,将mid=(l+r)>>1mid=(l+r)>>1mid=(l+r)>>1作为最大的最小距离进行判定,看此时是否能够将这些牛全部安放,如果可以lll继续右移,否则rrr左移
代码
#include<iostream>
#include<iomanip>
#include<cmath>
#include<string.h>
#include<queue>
#include<vector>
#include<map>
#include<algorithm>
using namespace std;
#define Max 100005
#define ll long long
#define inf 1000005
#define p pair<ll,ll>
ll n, m, ans = 0;
ll len[Max];
bool cnt(ll mid) {
ll pos = len[1], ans = 1;
for (ll i = 2; i <= n; i++) {
if (len[i]-pos >= mid) {//距离可以容纳一头牛
pos = len[i]; ans++;
}
}
return ans >= m;
}
int main() {
ll l = 0, r = 0;
cin >> n >> m; len[0] = 0;
for (ll i = 1; i <= n; i++) { cin >> len[i]; r = max(len[i], r); }
sort(len + 1, len + n + 1);
while (r > l + 1) {
ll mid = (r + l) >> 1;
if (cnt(mid)) l = mid; //以mid为最大的最小距离,能否满足m个牛的要求
else r = mid;
}
cout << l << endl;
}