基于图像处理和机器学习的疾病预测系统
1. 引言
在医疗保健系统中,技术的应用让疾病的检测和治疗变得更加便捷。如今,数据和医疗记录的收集与存储更为容易,借助这些数据技术,人们能够在早期发现一些严重的健康问题。机器学习算法和图像处理技术在检测多种重大疾病(如癌症、肺炎、糖尿病等)方面展现出了巨大的潜力。图像处理在可视化疾病方面发挥着重要作用,使医生和患者能够更方便地查看内部疾病情况。
准确预测重大和轻微疾病对于早期发现健康威胁至关重要。像癌症、肺炎这类疾病如果能早期发现,患者和医生就能尽早做出治疗决策。利用包括图像处理和机器学习在内的最新技术趋势,能够更轻松地完成疾病识别任务。与肉眼观察相比,机器学习和图像处理能够在极短的时间内给出更准确的结果。
2. 系统目标
本系统旨在开发一个网络应用程序,用户可以通过选择症状、上传图像报告、提供诊断报告中的参数值等方式来检测疾病,并获取特定疾病专家的联系信息。该系统不仅可以根据症状预测轻微疾病,还能预测癌症和肺炎等重大疾病,具体包括脑肿瘤、乳腺癌和皮肤癌等。项目的主要目标是提供一个节省时间且更安全的疾病预测系统,尤其适用于当前的疫情形势。
3. 背景
据估计,超过70%的人容易患上癌症、病毒感染等各种身体疾病。约30%的人因忽视早期身体症状而死亡,因此尽早识别和预测疾病以避免不必要的伤亡至关重要。
作者对疾病预测相关文献进行了综述,分析了一些高度相关系统的优缺点:
- 基于图像分类的脑肿瘤检测 :使用支持向量机(SVM)对肿瘤图像特征进行分类来检测脑肿瘤。80%的数据集用于训练,20%用于测试,但准确率仅为6