流式应用程序的实现:Ray 与 Kafka 的结合
1. 流式应用概述
在数据处理领域,除了使用 Ray 实现无服务器批量应用外,实时处理数据的流式应用也十分重要。流式处理指的是在数据创建后不久就对其采取行动,在一定的延迟约束内处理数据。常见的流式应用场景包括:
- 日志分析 :通过对硬件和软件产生的日志流进行分布式处理,深入了解系统状态。
- 欺诈检测 :实时监控金融交易,识别异常信号以阻止欺诈交易。
- 网络安全 :监控与系统的交互,检测异常情况,实时识别安全问题并隔离威胁。
- 物流监控 :实时跟踪汽车、卡车、车队和货物运输,优化路线规划。
- 物联网数据处理 :例如收集发动机数据,在故障演变成大问题之前进行检测。
- 推荐引擎 :根据用户的在线行为了解其兴趣,用于广告投放、产品和服务推荐等。
实现流式应用时,目前主要有两种选择:
- 利用 Ray 生态系统中的底层组件进行自定义实现。
- 使用外部库和工具与 Ray 结合实现流式处理。
2. Apache Kafka 简介
Apache Kafka 是实现流式应用的流行选择,它可以连接数据生产者和实现数据处理的消费者。
2.1 Kafka 入门
若要使用 Kafka 进行实验,可以选择本地运行或在云端使用:
- 本地安装 </