语音识别-先验概率后验概率似然函数

本文探讨了解码过程中的后验概率计算,详细解析了声学先验、语言模型和似然函数在语音识别中的作用,指出解码即求取后验概率,而在NBest中,后验概率的归一化可表征置信度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这里贴一个网页:

https://www.cnblogs.com/wjgaas/p/4523779.html

简单的说:
Posterior probability ∝ Likelihood × Prior probability

从语音识别的角度来看这个问题,那么就是,解码的过程就是求取后验概率的过程。

ref_W = argmax_w(p(O|W) * P(W)/P(O))
已知观察序列O是一个参数,那么在此就可以忽略 P(O)。

  • P(O) 实际工程中,即为声学各个pdf_id的先验,有利于声学统计的不均衡问题。
  • P(W) 是指语言模型,这里也是先验概率,已经知道的概率。
  • P(O|W)是指似然函数,可以理解为概率密度函数,正如hmm中的B(gmm或者是dnn);
    指给定模型参数[A,B,π],有了观察序列,对应的各个单词或者状态的概率是多少。
  • ref_W 即为求取的序列,就是一个后验概率。

解码的过程就是一个计算后验的过程;
在NBest中,后验概率的归一化,即可以表征置信度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值