高斯混合模型

本文深入探讨了高斯混合模型(GMM),从高斯分布出发,详细解释了单变量及多变量混合高斯模型的数学表达式。阐述了在多变量情况下如何使用期望最大化算法进行参数估计,并指出GMM在拟合复杂函数、语音识别等领域的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

高斯混合模型,首先说的那就是高斯分布,
f(x)=12πσexp⁡(−(x−μ)22σ2)=N(x,σ,μ2) f(x)=\frac{1}{\sqrt{{2\pi}}\sigma}\exp(-\frac{(x-\mu)^2}{2\sigma^2})=N(x,\sigma,\mu^2) f(x)=2πσ1exp(2σ2(xμ)2)=N(x,σ,μ2)
对应的均值方差是μ\muμσ2\sigma^2σ2
对于样本空间XXX,有样本数据x=[x1,x2,x3,x4,...,xn]x=[x_1,x_2,x_3,x_4,...,x_n]x=[x1,x2,x3,x4,...,xn]
高斯函数可以拟合任意的曲线,在样本是多维特征的情况下x⃗=[xi⃗]\vec{x}=[\vec{x_i}]x=[xi]
相应的就会有多元混合高斯分布。
多元的
f(x)=∑m=1M12πσmexp⁡(−(x−μm)22σm2) f({x}) = \sum_{m=1}^M{\frac{1}{\sqrt{{2\pi}}\sigma_m}\exp(-\frac{(x-\mu_m)^2}{2\sigma_m^2})} f(x)=m=1M2πσm1exp(2σm2(xμm)2)
上面是单变量的混合高斯模型。
在现实生活中将单变量扩展到多变量就会有
f(x⃗)=∑m=1Mcm2πD2∑m⃗12exp⁡(−12(x⃗−μm⃗)T∑m−1(x⃗−μm⃗))=∑m=1McmN(x⃗;μm⃗,∑m⃗) f(\vec{x}) = \sum_{m=1}^M{\frac{c_m}{{{2\pi}^{\frac{D}{2}}}{\vec{\sum{_m}}}^{\frac{1}{2}}} \exp(-{\frac{1}{2}}({\vec{x}-\vec{\mu_m}})^T{{\sum_m}^{-1}}({\vec{x}-\vec{\mu_m}}))} = \sum_{m=1}^M{{c_m}{N(\vec{x};\vec{\mu_m},\vec{\sum_m})}} f(x)=m=1M2π2Dm21cmexp(21(xμm)Tm1(xμm))=m=1McmN(x;μm,m)
参数估计问题,在多变量的高斯混合函数问题中,是用期望最大的方法来估计的,是一个迭代算法。
多变量的高斯混合函数能拟合任何函数。
在语音识别中,多变量的高斯混合函数,是以帧级别来估计每一帧的概率值;特征根据经验值来给定,一般就是特征的维度。
语音识别是一个语音信号序列识别的问题,gmm仅只是一个帧级别的模型;序列模型需要用隐马尔可夫模型来估计状态的序列问题;在状态上,可以用gmm模型来拟合当前状态的数据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值