热成像数据集-9,127张图片 夜间安防监控 工业设备检测 医疗体温筛查 消防应急救援 边境巡逻监控 野生动物研究

在这里插入图片描述

📦 已发布目标检测数据集合集(持续更新)

数据集名称图像数量应用方向博客链接
🔌 电网巡检检测数据集1600 张电力设备目标检测点击查看
🔥 火焰 / 烟雾 / 人检测数据集10000张安防监控,多目标检测点击查看
🚗 高质量车牌识别数据集10,000 张交通监控 / 车牌识别点击查看
🌿 农田杂草航拍检测数据集1,200 张农业智能巡检点击查看
🐑 航拍绵羊检测数据集1,700 张畜牧监控 / 航拍检测点击查看
🌡️ 热成像人体检测数据集15,000 张热成像下的行人检测点击查看
🦺 安全背心检测数据集3,897 张工地安全 / PPE识别点击查看
🚀 火箭检测数据集介绍12,000 张智慧医疗 / 养老护理点击查看
⚡ 绝缘子故障检测数据集2,100张无人机巡检/智能运维点击查看
🚦交通标志检测数据集1866张智能驾驶系统/地图数据更新点击查看
🚧 道路交通标志检测数据集2,000张智能地图与导航/交通监控与执法点击查看
😷 口罩检测数据集1,600张疫情防控管理/智能门禁系统点击查看
🦌 野生动物检测数据集5,138张野生动物保护监测/智能狩猎相机系统点击查看
🍎 水果识别数据集2,611张图片智能零售/智慧农业点击查看
🚁 无人机目标检测数据集14,751张无人机检测/航拍图像点击查看
🚬 吸烟行为检测数据集2,108张公共场所禁烟监控/健康行为研究点击查看
🛣️ 道路坑洞检测数据集8,300张智能道路巡检系统/车载安全监测设备点击查看
🛠️ 井盖识别数据集2,700 张道路巡检 智能城市点击查看
🧯 消防器材检测数据集9,600 张智慧安防系统 自动审核系统点击查看
📱 手机通话检测数据集3,100张智能监控系统 驾驶安全监控点击查看
🚜 建筑工地车辆检测数据集28,000 张施工现场安全监控 智能工地管理系统点击查看
🏊 游泳人员检测数据集4,500 张游泳池安全监控 海滩救生系统点击查看
🌿 植物病害检测数据集6,200 张智能农业监测系统 家庭园艺助手点击查看
🐦 鸟类计算机视觉数据集6,200 张鸟类保护监测 生态环境评估点击查看
🚁 无人机计算机视觉数据集7,000 张空域安全监管 无人机反制系统点击查看
🛡️ Aerial_Tank_Images 坦克目标检测数据集2,200 张军事目标识别与侦查 卫星遥感目标识别点击查看
♻️ 塑料可回收物检测数据集10,000 张智能垃圾分类系统 环保回收自动化点击查看
🏢 建筑物实例分割数据集9,700 张城市规划与发展 智慧城市管理点击查看
😊 人脸情绪检测数据集9,400 张智能客服系统 在线教育平台点击查看
🔍 红外人员车辆检测数据集53,000 张智能安防监控系统 边境安全防控点击查看
🚗 停车空间检测数据集3,100 张实时车位导航系统 智能停车收费管理点击查看
♻ 垃圾分类检测数据集15,000 张智能垃圾分类 回收站与环保设施自动化点击查看
✂️ 石头剪刀布手势识别数据集3,100 张智能游戏系统 人机交互界面点击查看
🍌 腐烂香蕉检测数据集4,267张食品质量检测 智能农产品分拣系统点击查看
🎰 扑克牌数字检测数据集6,240 张智能扑克游戏系统 赌场监控与安全点击查看
🚗 车牌识别数据集12,658张智能交通管理系统 停车场自动化管理点击查看
🏗️ 建筑设备检测数据集6,247张智能工地管理 施工安全监控点击查看
🦺 个人防护装备检测数据集7,892 张工业安全监控 建筑工地安全管理点击查看
⚓ 船舶检测数据集7,542张海洋交通监管 港口智能化管理点击查看
🚁 空中救援任务数据集6,742张自然灾害应急救援 海上搜救任务点击查看
✈️ 固定翼无人机检测数据集8,247张空域安全监管 机场反无人机系统点击查看
😷 口罩检测数据集8,432张公共场所监控系统 企业复工防疫管理点击查看
🚁 无人机检测数据集6,847张机场空域安全管理 重要设施防护监控点击查看
✂️ 剪刀石头布手势识别数据集2,376张智能游戏开发 儿童教育娱乐点击查看
🦺 安全背心识别数据集4,892张建筑工地安全监管 工业园区智能巡检点击查看
🥤 饮料容器材质检测数据集6,342张智能垃圾分拣系统 生产线质量检测点击查看
🚚 物流运输场景数据集7,854张智能仓储管理系统 物流车队智能调度点击查看

📌 每篇文章附带模型指标、训练思路与推理部署建议,欢迎点赞收藏支持~

在这里插入图片描述

🌡️ 热成像数据集介绍

📌 数据集概览

本项目是专注于热成像目标识别的计算机视觉数据集,共包含约 9,127 张图像,主要用于训练深度学习模型在夜间监控、工业检测、医疗诊断等场景下识别和检测热源目标的精准位置与类别。

  • 图像数量:9,127 张
  • 类别数:7 类
  • 适用任务:目标检测(Object Detection)、图像分类(Image Classification)
  • 适配模型:YOLOv5、YOLOv8、Faster R-CNN、SSD、ResNet 等主流框架

包含类别

类别英文名称描述
人员Person人体热辐射特征
车辆Vehicle汽车、卡车等机动车辆
动物Animal哺乳动物热源目标
建筑物Building房屋、建筑结构热分布
工业设备Equipment机械设备、管道等工业目标
火源Fire明火、高温热源
背景Background低温背景环境

数据集覆盖热成像应用中常见的目标类型,能够显著提升模型在夜视监控、工业检测和应急救援中的识别准确性。

🎯 应用场景

该数据集非常适用于以下场景与研究方向:

  • 夜间安防监控
    在完全黑暗环境下识别人员和车辆活动,提供24小时不间断安全监控能力。

  • 工业设备检测
    监控工业设备运行状态,及时发现过热、故障等异常情况,预防安全事故。

  • 医疗体温筛查
    快速检测人员体温异常,应用于疫情防控和健康监测场景。

  • 消防应急救援
    在火灾现场识别火源位置和人员分布,辅助救援人员制定营救策略。

  • 边境巡逻监控
    在恶劣天气和夜间条件下监控边境活动,提升边防安全水平。

  • 野生动物研究
    在不干扰动物的情况下进行夜间观察和行为研究,支持生态保护工作。

🖼 数据样本展示

以下展示部分数据集内的样本图片(均带有目标检测框):
在这里插入图片描述
在这里插入图片描述

数据集包含多种真实热成像环境下的图像:

  • 多温度范围:从-20°C到200°C的宽温度检测范围,涵盖各种应用场景
  • 不同环境条件:室内外、不同季节、各种天气条件下的热成像数据
  • 多距离检测:从近距离高分辨率到远距离广域监控的多样化视角
  • 复杂背景环境:城市、乡村、工业区、自然环境等不同背景
  • 动静态目标:包含运动中的人员车辆和静态的建筑设备

场景涵盖日夜不同时段、多种气候条件、不同地理环境的热成像数据,数据多样性优秀,特别适合训练在复杂环境下仍能准确识别的鲁棒性热成像检测模型。

使用建议

  1. 数据预处理优化

    • 针对热成像特征进行专门预处理:温度归一化、伪彩色映射、对比度增强
    • 考虑图像尺寸标准化(推荐640x640或832x832)
    • 应用适合热成像的数据增强:温度偏移、噪声添加、几何变换
  2. 模型训练策略

    • 考虑热成像数据的特殊性,可能需要从头训练或使用专门的预训练权重
    • 采用多尺度训练策略应对不同距离的目标检测
    • 结合温度信息进行特征融合,提升检测精度
  3. 实际部署考虑

    • 硬件适配:针对热成像摄像头的特殊硬件进行优化
    • 实时处理:优化推理速度以支持实时监控和预警需求
    • 环境适应:考虑不同环境温度对检测性能的影响
  4. 应用场景适配

    • 监控系统集成:与现有安防监控平台无缝集成
    • 移动端部署:支持便携式热成像设备的现场检测
    • 云端服务:提供大规模热成像数据的智能分析服务
  5. 性能监控与改进

    • 建立不同温度条件下的性能基准测试
    • 收集困难样本(极端温度、复杂背景)进行模型优化
    • 定期校准和更新模型以适应设备老化和环境变化

🌟 数据集特色

  • 高质量标注:热成像技术专家和计算机视觉团队联合标注
  • 温度范围广:涵盖从极低温到高温的完整温度范围
  • 场景真实性:基于真实应用场景采集,确保实用价值
  • 技术兼容性:支持主流深度学习框架和热成像设备
  • 持续更新:定期增加新的应用场景和目标类型数据

📈 商业价值

该数据集在以下商业领域具有重要价值:

  • 安防监控企业:开发高精度夜视监控和入侵检测系统
  • 工业自动化公司:提升设备故障预测和维护管理水平
  • 医疗设备制造商:开发智能体温检测和健康监测产品
  • 无人机制造商:为热成像无人机增加智能识别功能

🔗 技术标签

计算机视觉 热成像识别 目标检测 夜视监控 工业检测 YOLO 红外技术 智能安防 边缘计算 温度检测


注意: 本数据集适用于研究、教育和商业用途。使用时请遵守相关隐私保护法规和设备使用规范,确保数据使用符合技术伦理要求。建议在实际应用中结合热成像技术专业知识进行结果验证和系统校准。

YOLOv8 训练实战

本教程介绍如何使用 YOLOv8 对目标进行识别与检测。涵盖环境配置、数据准备、训练模型、模型推理和部署等全过程。


📦 1. 环境配置

建议使用 Python 3.8+,并确保支持 CUDA 的 GPU 环境。

# 创建并激活虚拟环境(可选)
python -m venv yolov8_env
source yolov8_env/bin/activate  # Windows 用户使用 yolov8_env\Scripts\activate

安装 YOLOv8 官方库 ultralytics

pip install ultralytics

📁 2. 数据准备

2.1 数据标注格式(YOLO)

每张图像对应一个 .txt 文件,每行代表一个目标,格式如下:

<class_id> <x_center> <y_center> <width> <height>

所有值为相对比例(0~1)。

类别编号从 0 开始。

2.2 文件结构示例

datasets/
├── images/
│   ├── train/
│   └── val/
├── labels/
│   ├── train/
│   └── val/

2.3 创建 data.yaml 配置文件

path: ./datasets
train: images/train
val: images/val

nc: 11
names: ['Bent_Insulator', 'Broken_Insulator_Cap', '', ...]

🚀 3. 模型训练

YOLOv8 提供多种模型:yolov8n, yolov8s, yolov8m, yolov8l, yolov8x。可根据设备性能选择。

yolo detect train \
  model=yolov8s.pt \
  data=./data.yaml \
  imgsz=640 \
  epochs=50 \
  batch=16 \
  project=weed_detection \
  name=yolov8s_crop_weed
参数类型默认值说明
model字符串-指定基础模型架构文件或预训练权重文件路径(.pt/.yaml
data字符串-数据集配置文件路径(YAML 格式),包含训练/验证路径和类别定义
imgsz整数640输入图像的尺寸(像素),推荐正方形尺寸(如 640x640)
epochs整数100训练总轮次,50 表示整个数据集会被迭代 50 次
batch整数16每个批次的样本数量,值越大需要越多显存
project字符串-项目根目录名称,所有输出文件(权重/日志等)将保存在此目录下
name字符串-实验名称,用于在项目目录下创建子文件夹存放本次训练结果

关键参数补充说明:

  1. model=yolov8s.pt

    • 使用预训练的 YOLOv8 small 版本(平衡速度与精度)
    • 可用选项:yolov8n.pt(nano)/yolov8m.pt(medium)/yolov8l.pt(large)
  2. data=./data.yaml

    # 典型 data.yaml 结构示例
    path: ../datasets/weeds
    train: images/train
    val: images/val
    names:
      0: Bent_Insulator
      1: Broken_Insulator_Cap
      2: ...
      3: ...
    

📈 4. 模型验证与测试

4.1 验证模型性能

yolo detect val \
  model=runs/detect/yolov8s_crop_weed/weights/best.pt \
  data=./data.yaml
参数类型必需说明
model字符串要验证的模型权重路径(通常为训练生成的 best.ptlast.pt
data字符串与训练时相同的 YAML 配置文件路径,需包含验证集路径和类别定义

关键参数详解

  1. model=runs/detect/yolov8s_crop_weed/weights/best.pt

    • 使用训练过程中在验证集表现最好的模型权重(best.pt
    • 替代选项:last.pt(最终epoch的权重)
    • 路径结构说明:
      runs/detect/
      └── [训练任务名称]/
          └── weights/
              ├── best.pt   # 验证指标最优的模型
              └── last.pt   # 最后一个epoch的模型
      
  2. data=./data.yaml

    • 必须与训练时使用的配置文件一致
    • 确保验证集路径正确:
      val: images/val  # 验证集图片路径
      names:
        0: crop
        1: weed
      

常用可选参数

参数示例值作用
batch16验证时的批次大小
imgsz640输入图像尺寸(需与训练一致)
conf0.25置信度阈值(0-1)
iou0.7NMS的IoU阈值
device0/cpu选择计算设备
save_jsonTrue保存结果为JSON文件

典型输出指标

Class     Images  Instances      P      R      mAP50  mAP50-95
all        100       752      0.891  0.867    0.904    0.672
crop       100       412      0.912  0.901    0.927    0.701
weed       100       340      0.870  0.833    0.881    0.643

4.2 推理测试图像

yolo detect predict \
  model=runs/detect/yolov8s_crop_weed/weights/best.pt \
  source=./datasets/images/val \
  save=True

🧠 5. 自定义推理脚本(Python)

from ultralytics import YOLO
import cv2

# 加载模型
model = YOLO('runs/detect/yolov8s_crop_weed/weights/best.pt')

# 推理图像
results = model('test.jpg')

# 可视化并保存结果
results[0].show()
results[0].save(filename='result.jpg')

🛠 6. 部署建议

✅ 本地运行:通过 Python 脚本直接推理。

🌐 Web API:可用 Flask/FastAPI 搭建检测接口。

📦 边缘部署:YOLOv8 支持导出为 ONNX,便于在 Jetson、RKNN 等平台上部署。

导出示例:

yolo export model=best.pt format=onnx

📌 总结流程

阶段内容
✅ 环境配置安装 ultralytics, PyTorch 等依赖
✅ 数据准备标注图片、组织数据集结构、配置 YAML
✅ 模型训练使用命令行开始训练 YOLOv8 模型
✅ 验证评估检查模型准确率、mAP 等性能指标
✅ 推理测试运行模型检测实际图像目标
✅ 高级部署导出模型,部署到 Web 或边缘设备
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值