【ACDC数据集】:预处理ACDC心脏3D MRI影像数据集到VOC数据集格式,nii转为jpg,label转为png

【Segment Anything Model】做分割的专栏链接,欢迎来学习。
【博主微信】cvxiaoyixiao
本专栏为公开数据集的介绍和预处理,持续更新中。

2023年11月2日更新补充

跟我要处理好的数据集的,我都给了。请自行注意检查数据集是否是你想要的,我只处理了原数据集的第一部分
也就是frame01部分。并且测试集 现在是RGBA图像,可以自行转化为L灰度图像。

def convert_RGBA2L():
    from PIL import Image
    import os

    path = "ACDC_dataset/testing/label"
    for i in os.listdir(path):
        old_path = os.path.join(path, i)
        rgba_image = Image.open(old_path)
        gray_image = rgba_image.convert("L")
        new_name = os.path.splitext(i)[0] + ".png"  # 更改扩展名为.png
        new_path = os.path.join(path, new_name)
        gray_image.save(new_path, "PNG")  # 指定保存格式为PNG

1️⃣ ACDC数据集介绍

他是一个多类别的心脏3D MRI影像数据集`,2017年ACDC挑战赛(Automated Cardiac Diagnosis
Challenge)。

原数据集获取,网盘永久有效:
链接:https://pan.baidu.com/s/1F4Xq1crtUSmFcSKxwO4Eaw?pwd=ejfa 提取码:ejfa
–来自百度网盘超级会员V6的分享

2️⃣ ACDC数据集样例

首先夸夸👍 ,ACDC数据集存放格式非常规律👍 ,数据质量非常高👍 清晰了分为3类别。
在这里插入图片描述
training里有100例患者,testing里有50例患者。每个nii的切片个数不同根据勾画的肿瘤。
在这里插入图片描述

Info是媒体信息
patient001_4d.nii.gz是全部的切片,我也不知道从医学上怎么描述,就是这个患者的立体影像,包括没有肿瘤的部分
patient001_frame01.nii.gz是一个时期nii影响的压缩包
patient001_frame01_gt.nii.gz对应patient001_frame01.nii.gz的肿瘤勾画的label的压缩包。用四种像素对应了四个类别包括背景。
patient001_frame12.nii.gz是统一患者另一时期的影像
patient001_frame12_gt.nii.gz是对应的label

总之每个患者都有一个整体影像,还有两个不同成像和对应label。以下是打开之后的影像图。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3️⃣ 预处理ACDC目标

目标:处理ACDC的nii.gz数据集到VOC格式的2d的png图片
VOC格式 这篇文章有讲直达
在这里插入图片描述

例如:将patient001_frame01.nii.gz处理成几张png作为网络image的输入。将patient001_frame01_gt.nii.gz处理成几张png作为label。只处理了training的100例患者,把training当成了整个集合划分了训练测试。并且只关心了frame01第一阶段,第二个阶段的未关心。只关心了留下的部分。够了。
在这里插入图片描述

4️⃣ 处理结果样图

处理结果样图:
img转为jpg label转为png 并且像素为0-3. 0代表背景,1-3代表分类。label图像素太小,这里看不出来,可以看第三张数组图
在这里插入图片描述在这里插入图片描述
在这里插入图片描述

5️⃣ 代码

事先准备好VOC文件夹在这里插入图片描述

"""
处理官网下载的ACDC到网络要求的VOC格式,按需调用
author: cvxiayixiao
Wechat: cvxiayixiao
"""
import os
from os.path import join
import nibabel as nib
import gzip
import shutil
import matplotlib.pyplot as plt
import numpy as np

ori_ACDC_train_path = './ACDC_challenge_20170617/training'


def niigz2nii():
    """
    解压每个患者的01阶段的nii.gz 和 gt.nii.gz 到输入文件夹"ACDC_nii"
    """

    input_path = ori_ACDC_train_path
    # 处理image
    # target='frame01.nii'
    # output_path = 'ACDC_nii/images'

    # 处理gt
    target = 'frame01_gt.nii'
    output_path = 'ACDC_nii/labels'

    for patient in os.listdir(input_path):
        # ACDC_challenge_20170617/training/patient001
        patient_path = join(input_path, patient)
        for niigz in os.listdir(patient_path):
            if target in niigz:
                niigzpath = join(patient_path, niigz)
                new_nii_path = join(output_path, niigz)
                shutil.copy(niigzpath, new_nii_path)


# niigz2nii()
def convert_nii_to_jpg():
    '''
    将ACDC_nii/images中的nii转到VOCjpg中
    :return:
    '''
    image_num = 0
    nii_path = "./ACDC_nii/images"
    output_dir = "./VOCdevkit/VOC2007/JPEGImages"
    for patient in os.listdir(nii_path):
        patient_path = join(nii_path, patient)
        for one in os.listdir(patient_path):
            one_patient_nii_path = join(patient_path, one)
            # 加载 .nii 文件
            nii_img = nib.load(one_patient_nii_path)
            data = nii_img.get_fdata()
            # 遍历数据的每个切片,并保存为 .png 文件
            for i in range(data.shape[2]):
                image_num += 1
                # 获取当前切片数据
                slice_data = data[:, :, i]
                # 创建输出文件路径
                num = f"{image_num}".zfill(6)
                output_path = os.path.join(output_dir, f'{patient}_{num}.jpg')
                # 以灰度图像格式保存切片数据为 .png 文件
                plt.imsave(output_path, slice_data, cmap='gray')


# convert_nii_to_jpg()

def convert_nii_to_png():
    '''
    将ACDC_nii/labels中的nii转到ACDC_nii/tmp_png_label中
    此时的像素是原label 中的像素,不是网络中的分类像素,还需要一部转换
    :return:
    '''
    image_num = 0
    nii_path = "./ACDC_nii/labels"
    output_dir = "./tmp"
    for patient in os.listdir(nii_path):
        patient_path = join(nii_path, patient)
        for one in os.listdir(patient_path):
            one_patient_nii_path = join(patient_path, one)
            # 加载 .nii 文件
            nii_img = nib.load(one_patient_nii_path)
            data = nii_img.get_fdata()
            # 遍历数据的每个切片,并保存为 .png 文件
            for i in range(data.shape[2]):
                image_num += 1
                # 获取当前切片数据
                slice_data = data[:, :, i]
                # 创建输出文件路径
                num = f"{image_num}".zfill(6)
                output_path = os.path.join(output_dir, f'{patient}_{num}.png')
                # 以灰度图像格式保存切片数据为 .png 文件
                plt.imsave(output_path, slice_data, cmap='gray')

from PIL import Image


def turnto255():
    from PIL import Image
    from PIL import Image
    for i in os.listdir("tmp"):
        output_path = os.path.join("./tmp1", i)
        png_path = join("tmp", i)
        # 读取图像
        image = plt.imread(png_path)

        # 取三个通道的平均值
        im_gray = np.mean(image, axis=2)
        im_gray = Image.fromarray((im_gray * 255).astype(np.uint8)).convert("L")
        # 保存输出图像
        im_gray.save(output_path)


def rename():
    """
    处理好的VOC2007 train和test名称不同,名称不对应不能训练
    转为对应的,之前的留作副本可以对应原图
    :return:
    """
    root = "VOCdevkit/VOC2007/SegmentationClass"
    for i in os.listdir(root):
        img_old_path = join(root, i)
        new_png_path = join(root, i[-10:])
        shutil.copy(img_old_path, new_png_path)


# rename()0-255转为0-3类代码,加微信cvxiayixiao

6️⃣ 划分测试集和训练集

import os
import random

import numpy as np
from PIL import Image
from tqdm import tqdm

#   修改train_percent用于改变验证集的比例 9:1
trainval_percent    = 1
train_percent       = 0.9
VOCdevkit_path      = 'VOCdevkit'

if __name__ == "__main__":
    random.seed(0)
    print("Generate txt in ImageSets.")
    segfilepath     = os.path.join(VOCdevkit_path, 'VOC2007/SegmentationClass')
    saveBasePath    = os.path.join(VOCdevkit_path, 'VOC2007/ImageSets/Segmentation')
    
    temp_seg = os.listdir(segfilepath)
    total_seg = []
    for seg in temp_seg:
        if seg.endswith(".png"):
            total_seg.append(seg)

    num     = len(total_seg)  
    list    = range(num)  
    tv      = int(num*trainval_percent)  
    tr      = int(tv*train_percent)  
    trainval= random.sample(list,tv)  
    train   = random.sample(trainval,tr)  
    
    print("train and val size",tv)
    print("traub suze",tr)
    ftrainval   = open(os.path.join(saveBasePath,'trainval.txt'), 'w')  
    ftest       = open(os.path.join(saveBasePath,'test.txt'), 'w')  
    ftrain      = open(os.path.join(saveBasePath,'train.txt'), 'w')  
    fval        = open(os.path.join(saveBasePath,'val.txt'), 'w')  
    
    for i in list:  
        name = total_seg[i][:-4]+'\n'  
        if i in trainval:  
            ftrainval.write(name)  
            if i in train:  
                ftrain.write(name)  
            else:  
                fval.write(name)  
        else:  
            ftest.write(name)  
    
    ftrainval.close()  
    ftrain.close()  
    fval.close()  
    ftest.close()

成功划分
在这里插入图片描述

<think>好的,我需要帮助用户找到关于ACDC数据集在YOLO格式下的标签信息和相关使用教程。首先,我需要确认用户提到的ACDC数据集具体是哪一个,因为可能有多个同名的数据集。根据常见的计算机视觉数据集ACDC通常指“Adverse Conditions Dataset with Correspondences”,主要用于自动驾驶场景下的恶劣天气条件(如雾、雨、雪、夜晚)下的目标检测和分割任务。这个数据集由RGB图像、对应的语义分割标注和目标检测标注组成。 接下来,用户需要的是YOLO格式的标签信息和使用教程。YOLO格式通常要求每个图像对应一个.txt文件,其中每行表示一个目标,格式为:类别编号、中心点x坐标、中心点y坐标、宽度、高度,这些值都是相对于图像尺寸的归一化数值(0到1之间)。例如: ``` 0 0.45 0.55 0.2 0.3 ``` 首先,我需要确认ACDC数据集是否官方提供YOLO格式的标签。根据我的了解,ACDC数据集原始提供的标注可能主要是语义分割的,而目标检测的标注可能需要转换。如果官方没有直接提供YOLO格式的标签,用户可能需要自行转换。 接下来,用户可能需要相关的教程或步骤来将ACDC数据集转换为YOLO格式。这通常涉及以下几个步骤: 1. **下载数据集并检查标注格式**:用户需要先下载ACDC数据集,查看其提供的标注格式。例如,可能是COCO格式的JSON文件,或者PASCAL VOC的XML文件,或者是其他格式。 2. **转换工具或脚本**:如果数据集是COCO格式,可以使用现有的转换脚本,如`coco2yolo`工具。如果标注是其他格式,可能需要编写自定义脚本。例如,使用Python读取原始标注文件,提取边界框信息,并转换为YOLO格式的.txt文件。 3. **验证标签正确性**:转换完成后,需要使用工具(如Yolo_mark)检查标签是否正确对应到图像上。例如,运行可视化工具确认边界框的位置和类别是否正确。 4. **配置YOLO训练文件**:用户需要创建YAML配置文件,指定数据集路径、类别名称等信息,类似于引用[2]中提到的`mydata.yaml`。例如: ```yaml path: ../datasets/ACDC train: images/train val: images/val names: 0: car 1: pedestrian 2: traffic light ``` 5. **训练模型**:使用Ultralytics YOLOv8或其他版本进行训练,如引用[3]中提到的框架版本。用户需要确保Python环境和依赖项正确安装。 可能的疑问点:ACDC数据集是否包含目标检测的标注?如果原始数据集只有语义分割标注,用户可能需要使用实例分割转检测框的方法,比如通过分割掩码生成外接矩形框。 此外,需要提醒用户注意数据集中是否所有图像都有对应的标签,避免未标注的图像影响训练效果,如引用[4]中提到的过滤步骤。如果数据集中存在无目标的图像,应将其从训练集中排除或添加空标签文件。 最后,如果找不到现成的转换教程,可能需要指导用户参考通用转换方法,或者查找ACDC数据集相关论文和官方文档,看是否有社区提供的转换脚本。例如,GitHub上可能有用户分享的转换代码,或者论坛中的讨论。 总结步骤: 1. 确认ACDC数据集提供的标注格式。 2. 根据原始格式选择或编写转换脚本。 3. 转换后验证标签准确性。 4. 配置YOLO训练文件并开始训练。 同时,需要提醒用户参考YOLO官方文档和ACDC数据集文档,确保兼容性。</think>### ACDC数据集YOLO标签格式及使用说明 ACDC数据集(Adverse Conditions Dataset with Correspondences)主要面向自动驾驶在恶劣天气下的目标检测与分割任务[^1]。以下是其YOLO标签格式的说明及使用步骤: --- #### **1. 标签格式** - **YOLO标准格式要求**: 每个图像对应一个`.txt`文件,每行描述一个目标,格式为: $$ \text{class\_id} \quad x\_center \quad y\_center \quad width \quad height $$ 其中坐标和尺寸均为归一化数值(0~1),例如检测车辆的标签可能为: ``` 0 0.45 0.55 0.2 0.3 ``` - **ACDC数据集的适配性**: ACDC原始标注包含语义分割(PNG掩码)和实例级目标检测(COCO格式JSON文件)。若需YOLO格式,需**将COCO标注转换为YOLO格式**[^2]。 --- #### **2. 转换步骤** 1. **下载数据集** 从[ACDC官网](https://acdc.vision.ee.ethz.ch/)获取数据集,包含`rgb_images`和`annotations`(COCO格式)。 2. **使用转换工具** 运行COCO转YOLO脚本,例如: ```python from pycocotools.coco import COCO import os coco = COCO("path/to/annotations.json") for img_id in coco.getImgIds(): ann_ids = coco.getAnnIds(imgIds=img_id) anns = coco.loadAnns(ann_ids) with open(f"labels/{img_id}.txt", "w") as f: for ann in anns: x, y, w, h = ann['bbox'] img_w = coco.imgs[img_id]['width'] img_h = coco.imgs[img_id]['height'] # 归一化 x_center = (x + w/2) / img_w y_center = (y + h/2) / img_h w_norm = w / img_w h_norm = h / img_h f.write(f"{ann['category_id']} {x_center} {y_center} {w_norm} {h_norm}\n") ``` 3. **验证标签** 使用[Yolo_mark工具](https://github.com/AlexeyAB/Yolo_mark)检查边界框是否对齐。 --- #### **3. 配置YOLO训练文件** 创建`acdc.yaml`(参考引用[2]): ```yaml path: /datasets/ACDC train: images/train val: images/val names: 0: car 1: pedestrian 2: traffic_light 3: bicycle ``` --- #### **4. 训练YOLOv8模型** 安装Ultralytics库后运行: ```python from ultralytics import YOLO model = YOLO("yolov8n.pt") model.train(data="acdc.yaml", epochs=100) ``` --- #### **注意事项** - **数据过滤**:确保训练图片均包含有效目标,移除无目标图像[^4]。 - **标签一致性**:检查类别ID是否与配置文件匹配[^1]。 ---
评论 50
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cv夏一笑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值