预训练和迁移学习

本文介绍了如何通过PyTorch实现迁移学习,包括下载预训练模型、载入模型并利用预训练特征进行优化的方法。重点讲解了如何从模型权重文件(Torch.load)到状态字典(Net.load_state_dict)的操作流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

迁移学习和预训练

参考链接

一文看懂迁移学习:怎样用预训练模型搞定深度神经网络?

笔记

原模型学习到的特征保存为一个网络文件就是一个预训练模型。
迁移学习是一种优化方法,节省时间。
方法(pytorch):
1.先下载预训练模型
2.载入预训练模型
载入预训练模型
Torch.load(model_weight_path) # 是将预训练的模型文件载入到内存中,但是还没有载入到模型中
Net.load_state_dict() # 载入的预训练文件是一个字典的形式。