跳转表

原文作者:lxzoliver
转自链接:https://learnku.com/articles/43200

一、如何理解 “跳表”?

对于⼀个单链表来讲,即便链表中存储的数据是有序的,如果我们要想在其中查找某个数据,也只能从头到尾遍历链表。这样查找效率就会很低,时间复杂度会很⾼,是 O (n)。
在这里插入图片描述

那怎么来提⾼查找效率呢?如果像图中那样,对链表建⽴⼀级 “索引”,查找起来是不是就会更快⼀些呢?每两个结点提取⼀个结点到上⼀级,我们把抽出来的那⼀级叫作索引或索引层。

在这里插入图片描述

如果我们现在要查找某个结点,⽐如 16。我们可以先在索引层遍历,当遍历到索引层中值为 13 的结点时,我们发现下⼀个结点是 17,那要查找的结点 16 肯定就在这两个结点之间。然后我们通过索引层结点的 down 指针,下降到原始链表这⼀层,继续遍历。这个时候,我们只需要再遍历 2 个结点,就可以找到值等于 16 的这个结点了。这样,原来如果要查找 16,需要遍历 10 个结点,现在只需要遍历 7 个结点。

跟前⾯建⽴第⼀级索引的⽅式相似,我们在第⼀级索引的基础之上,每两个结点就抽出⼀个结点到第⼆级索引。现在我们再来查找 16,只需要遍历 6 个结点了,需要遍历的结点数量⼜减少了。

在这里插入图片描述
我举的例⼦数据量不⼤,所以即便加了两级索引,查找效率的提升也并不明显。为了让你能真切地感受索引提升查询效率。我画了⼀个包含 64 个结点的链表,按照前⾯讲的这种思路,建⽴了五级索引。
在这里插入图片描述
这种链表加多级索引的结构,就是跳表

二、跳表的查询效率

算法的执⾏效率可以通过时间复杂度来度量,这⾥依旧可以⽤。我们知道,在⼀个单链表中查询某个数据的时间复杂度是 O (n)。那在⼀个具有多级索引的跳表中,查询某个数据的时间复杂度是多少呢?

按照我们刚才讲的,每两个结点会抽出⼀个结点作为上⼀级索引的结点,那第⼀级索引的结点个数⼤约就是 n/2,第⼆级索引的结点个数⼤约就是 n/4,第三级索引的结点个数⼤约就是 n/8,依次类推,也就是说,第 k 级索引的结点个数是第 k-1 级索引的结点个数的 1/2,那第 k 级索引结点的个数就是 n/(2k)。

假设索引有 h 级,最⾼级的索引有 2 个结点。通过上⾯的公式,我们可以得到 n/(2h)=2,从⽽求得 h=log2n-1。如果包含原始链表这⼀层,整个跳表的⾼度就是 log2n。我们在跳表中查询某个数据的时候,如果每⼀层都要遍历 m 个结点,那在跳表中查询⼀个数据的时间复杂度就是 O (m*logn)。

假设我们要查找的数据是 x,在第 k 级索引中,我们遍历到 y 结点之后,发现 x ⼤于 y,⼩于后⾯的结点 z,所以我们通过 y 的 down 指针,从第 k 级索引下降到第 k-1 级索引。在第 k-1 级索引中,y 和 z 之间只有 3 个结点(包含 y 和 z),所以,我们在 K-1 级索引中最多只需要遍历 3 个结点,依次类推,每⼀级索引都最多只需要遍历 3 个结点。

在这里插入图片描述
通过上⾯的分析,我们得到 m=3,所以在跳表中查询任意数据的时间复杂度就是 O (logn)。这个查找的时间复杂度跟⼆分查找是⼀样的。换句话说,我们其实是基于单链表实现了⼆分查找。

三、跳表的空间复杂度

假设原始链表⼤⼩为 n,那第⼀级索引⼤约有 n/2 个结点,第⼆级索引⼤约有 n/4 个结点,以此类推,每上升⼀级就减少⼀半,直到剩下 2 个结点。如果我们把每层索引的结点数写出来,就是⼀个等⽐数列。
在这里插入图片描述
这⼏级索引的结点总和就是 n/2+n/4+n/8…+8+4+2=n-2。所以,跳表的空间复杂度是 O (n)

四、⾼效的动态插⼊和删除

跳表这个动态数据结构,不仅⽀持查找操作,还⽀持动态的插⼊、删除操作,⽽且插⼊、删除操作的时间复杂度也是 O (logn)。

在单链表中,⼀旦定位好要插⼊的位置,插⼊结点的时间复杂度是很低的,就是 O (1)。但是,这⾥为了保证原始链表中数据的有序性,我们需要先找到要插⼊的位置,这个查找操作就会⽐较耗时。
对于纯粹的单链表,需要遍历每个结点,来找到插⼊的位置。但是,对于跳表来说,我们讲过查找某个结点的的时间复杂度是 O (logn),所以这⾥查找某个数据应该插⼊的位置,⽅法也是类似的,时间复杂度也是 O (logn)。

在这里插入图片描述

Redis 中的有序集合是通过跳表来实现的.

严格点讲,其实还⽤到了散列表。
Redis 中的有序集合⽀持的核⼼操作主要有下⾯这⼏个:

  1. 插⼊⼀个数据;
  2. 删除⼀个数据;
  3. 查找⼀个数据;
  4. 按照区间查找数据(⽐如查找值在 [100, 356] 之间的数据);
  5. 迭代输出有序序列。

其中,插⼊、删除、查找以及迭代输出有序序列这⼏个操作,红⿊树也可以完成,时间复杂度跟跳表是⼀样的。但是,按照区间来查找数据这个操作,红⿊树的效率没有跳表⾼。 对于按照区间查找数据这个操作, 跳表可以做到 O (logn) 的时间复杂度定位区间的起点,然后在原始链表中顺序往后遍历就可以了。

当然,Redis 之所以⽤跳表来实现有序集合,还有其他原因,⽐如,跳表更容易代码实现。虽然跳表的实现也不简单,但⽐起红⿊树来说还是好懂、好写多了,⽽简单就意味着可读性好,不容易出错。还有,跳表更加灵活,它可以通过改变索引构建策略,有效平衡执⾏效率和内存消耗。

<think>我们正在讨论函数跳转,根据用户提供的引用和之前的问题,我们需要介绍函数跳转的概念、实现方式以及应用场景。引用中提到了跳转(如引用[1]和引用[4])以及虚函数(引用[2]),但用户明确要求了解函数跳转,因此我们将重点放在跳转(Jump Table)上。 函数跳转是一种数据结构,通常用于实现多路分支(例如,替代大量的if-else或switch-case语句)。它通过一个函数指针数组(或链)来存储各个分支对应的函数地址,然后通过索引直接跳转到相应的函数执行。这样可以提高代码的执行效率(尤其是分支很多时)并增强可读性。 以下是对函数跳转的详细介绍: ### 1. **函数跳转的基本概念** - **定义**:函数跳转是一个存储函数指针的数组(或链),每个元素对应一个特定分支的处理函数。通过索引值(如枚举常量或整数)直接访问数组中的函数指针并调用相应函数。 - **优势**: - **高效性**:跳转的查找时间复杂度为$O(1)$(数组)或$O(n)$(链),远优于多重if-else的$O(n)$(最坏情况)。对于数组实现的跳转,直接通过下标访问,效率极高。 - **可扩展性**:新增分支只需在跳转中添加一个函数指针,无需修改主逻辑代码。 - **代码简洁**:避免冗长的条件判断,使代码更清晰。 ### 2. **函数跳转的实现方式** - **数组实现**(最常用):使用函数指针数组,索引与分支条件一一对应。 ```c // 定义函数指针类型 typedef void (*func_ptr)(int); // 定义处理函数 void handle_case0(int arg) { /* ... */ } void handle_case1(int arg) { /* ... */ } void handle_case2(int arg) { /* ... */ } // 创建跳转 func_ptr jump_table[] = { handle_case0, handle_case1, handle_case2 }; // 使用跳转 int index = 1; // 根据条件计算索引 if (index >= 0 && index < sizeof(jump_table)/sizeof(func_ptr)) { jump_table[index](arg); // 调用对应函数 } ``` 注意:数组大小固定,需确保索引在有效范围内(引用[4]中提到的函数指针用法)。 - **链实现**(引用[1]):适用于分支动态变化的场景,但查找效率较低。 ```c typedef struct JumpNode { int index; // 分支标识 void (*func)(int); // 处理函数 struct JumpNode* next; } JumpNode; // 创建链跳转 JumpNode* head = NULL; // 添加节点(略) // 查找并调用 JumpNode* p = head; while (p) { if (p->index == target_index) { p->func(arg); break; } p = p->next; } ``` ### 3. **应用场景** - **嵌入式系统**(引用[4]):资源受限的设备中,跳转可减少代码体积并提高效率。例如,状态机处理、命令解析器等。 - **编译器优化**:如switch语句的优化(引用[1]),编译器可能生成跳转替代条件判断。 - **多态实现**:C++虚函数(vtable)本质是跳转的高级形式(引用[2]),每个虚函数对应中的一个槽位。 ### 4. **与虚函数的区别** - **虚函数**:面向对象中实现动态绑定的机制,由编译器自动生成(引用[2])。每个类有一个虚,存储虚函数地址;对象通过虚指针访问。 - **函数跳转**:更通用的编程技巧,手动创建,用于优化分支逻辑。 ### 5. **性能优化** - 内建函数(如引用[3])和跳转结合可进一步提升效率,例如使用编译器内置指令优化函数调用开销。 - 跳转对分支预测友好,可减少CPU流水线中断。 总之,函数跳转通过空间换时间提升分支逻辑效率,是底层开发和性能优化的重要工具[^1][^4]。 §§相关问题§§ 1. 函数跳转在哪些场景下优于switch语句? 2. 如何避免函数跳转的索引越界问题? 3. 函数跳转与虚函数有什么异同?</think>### 函数跳转详解 函数跳转(Function Jump Table)是一种通过**函数指针数组**实现高效分支调用的编程技术。它通过预存储函数地址,将条件分支转换为直接索引访问,显著提升程序性能。以下是核心要点: #### 1. **基本概念与工作原理** - **数据结构**:跳转本质是**函数指针数组**,每个元素存储一个函数的入口地址 ```c // 定义函数指针类型 typedef void (*HandlerFunc)(int); // 创建跳转(函数指针数组) HandlerFunc jump_table[] = { handle_case0, // 索引0的函数 handle_case1, // 索引1的函数 handle_case2 // 索引2的函数 }; ``` - **调用机制**:通过整数索引直接获取函数地址并调用 ```c int index = get_user_input(); // 获取分支索引 jump_table[index](arg); // 直接跳转到目标函数 ``` - **性能优势**:时间复杂度从$O(n)$(if-else链)降为$O(1)$,消除分支预测失败开销[^1][^4] #### 2. **关键技术实现** - **地址绑定**: - 编译阶段:编译器为每个函数生成机器码并确定**相对地址** - 链接阶段:链接器解析绝对地址,填充跳转(引用[2]的虚类似机制) ```mermaid graph LR A[源代码] --> B[编译] B --> C[函数机器码] C --> D[函数相对地址] D --> E[链接器] E --> F[填充绝对地址到跳转] ``` - **动态扩展**: - 链跳转(如引用[1]描述)支持运行时动态添加函数节点 ```c struct JumpNode { int id; void (*func)(int); struct JumpNode* next; }; ``` #### 3. **核心应用场景** 1. **嵌入式系统优化** - 替代资源消耗大的`switch-case`,减少指令缓存未命中 - 典型应用:传感器状态机处理、通信协议解析[^4] 2. **编译器底层优化** - 编译器将大跨度`switch`语句自动转换为跳转(如GCC的`-fjump-tables`) - 虚函数(vtable)本质是面向对象的跳转(引用[2]) 3. **高性能计算** - 与内建函数结合(如引用[3]),通过硬件指令加速 - 案例:图像处理中像素格式转换的分派优化 #### 4. **对比传统分支实现** | 方式 | 指令缓存效率 | 分支预测 | 扩展性 | 内存占用 | |---------------|--------------|----------|--------|----------| | **if-else链** | 低(跳转多) | 易失败 | 差 | 低 | | **跳转** | 高(顺序访问)| 无 | 优 | 中 | > 注:跳转内存占用取决于分支数量,通常空间换时间合理 #### 5. **实践注意事项** - **安全防护**:必须验证索引范围,防止越界访问 ```c if (index >=0 && index < sizeof(jump_table)/sizeof(HandlerFunc)) { jump_table[index](arg); } ``` - **调试支持**:结合`ctags`/`cscope`(引用[5])实现函数地址快速定位 - **跨平台考虑**:ARM架构中优先使用`.rodata`段存放跳转 > 跳转在分支数>5时性能优势显著,是嵌入式/高性能系统的关键优化手段[^1][^4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值