原题链接:1104 Sum of Number Segments (20分)
关键词:数学
Given a sequence of positive numbers, a segment is defined to be a consecutive subsequence. For example, given the sequence { 0.1, 0.2, 0.3, 0.4 }, we have 10 segments: (0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1, 0.2, 0.3, 0.4) (0.2) (0.2, 0.3) (0.2, 0.3, 0.4) (0.3) (0.3, 0.4) and (0.4).
Now given a sequence, you are supposed to find the sum of all the numbers in all the segments. For the previous example, the sum of all the 10 segments is 0.1 + 0.3 + 0.6 + 1.0 + 0.2 + 0.5 + 0.9 + 0.3 + 0.7 + 0.4 = 5.0.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N, the size of the sequence which is no more than 105 . The next line contains N positive numbers in the sequence, each no more than 1.0, separated by a space.
Output Specification:
For each test case, print in one line the sum of all the numbers in all the segments, accurate up to 2 decimal places.
Sample Input:
4
0.1 0.2 0.3 0.4
Sample Output:
5.00
题目大意: 给定一个正数序列,每个非空连续子序列都可被称作一个数段。输出所有数段中所有数字的总和,结果保留两位。
分析: 假设我们选取的片段中包括temp,它是第i个数字,设置个片段的首尾指针分别为p和q,那么对于p,有i种选择,即12…i,对于q,有n-i+1种选择,即i, i+1, … n,所以p和q组合形成的首尾片段有i * (n-i+1)种,因为每个里面都会出现temp,所以temp引起的总和为temp * i * (n – i + 1)
;遍历完所有数字,将每个temp引起的总和都累加到sum中,最后输出sum的值。
注意: 因为涉及到了double型的相乘相加,很有可能小误差会导致最后样例过不去,可以参考柳神博客:
代码:
#include <iostream>
using namespace std;
int main() {
int n;
cin >> n;
long long sum = 0;
double temp;
for (int i = 1; i <= n; i++) {
cin >> temp;
sum += (long long)(temp * 1000) * i * (n - i + 1);
}
printf("%.2f", sum / 1000.0);
return 0;
}