机器学习之K均值聚类代码

本文介绍了机器学习中的K均值聚类算法,这是一个无监督学习方法。核心思想是用户预设k个初始质心,通过迭代更新质心和样本点的归属,直到质心稳定或达到迭代上限。算法包括选择质心、分配样本点到最近的质心、重新计算质心等步骤。文中还展示了算法的代码实现和结果图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

K均值:

是聚类算法中最简单的,高效的,属于无监督学习算法

核心思想:

由用户指定k个初始质心,以作为聚类的类别,重复迭代直至算法收敛

基本算法流程:

1.选取k个质心
2.对每个样本点,计算得到距其最近的质心,将其类别标为所对应的cluster(群)
3.重新计算k个cluster对应的质心
4.质心不再发生变化或迭代上限
代码部分

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# 从sklearn中直接生成聚类数据
from sklearn.datasets.samples_generator import make_blobs
# 计算距离函数
from scipy.spatial.distance import cdist
# 数据加载
x,y = make_blobs(n_samples=100,centers=6,random_state=1234,cluster_std=0.6)
plt.figure(figsize=(10,8))
plt.scatter(x[:,0],x[:,1])
plt.title('K Means ')
# plt.show()

# 算法实现
class K_Means(object):
    def __init__(self,n_cluster=6,max_iter=300,centroids=[]):
        self.n_cluster = n_cluster
        self.max_iter = max_iter
        self.centroids = np.array(centroids,dtype=np.float)
    # 训练模型的方法,k_mean聚类过程,传入原始样本点
    def fit(self,data):
#         假如没有指定初始质心 ,就随机选取data中的点作为初
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值