机器学习的相关算法的实现需要大量使用到矩阵运算。用C++实现的话,OpenCv里面的Mat数据结构是一个很好的选择。
初始化
- 创建cv::Mat,并且初始化cv::Scalar::all(0)
- cv::Mat 可以直接使用cout进行输出
cv::Mat a(3, 3, CV_32FC1, cv::Scalar::all(0));
cout << a << endl;
使用数组初始化
int bArray[3][3] = { {1, 2, 3}, {4, 5, 6}, {7, 8, 9} };
cv::Mat b(3, 3, CV_8UC1, bArray);
PS: CV_8UC1代表的含义(摘抄自这里)
CV_<bit_depth>(S|U|F)C<number_of_channels>
1--bit_depth---比特数---代表8bite,16bites,32bites,64bites---举个例子吧--比如说,如
如果你现在创建了一个存储--灰度图片的Mat对象,这个图像的大小为宽100,高100,那么,现在这张
灰度图片中有10000个像素点,它每一个像素点在内存空间所占的空间大小是8bite,8位--所以它对
应的就是CV_8
2--S|U|F--S--代表---signed int---有符号整形
U--代表--unsigned int--无符号整形
F--代表--float---------单精度浮点型
3--C<number_of_channels>----代表---一张图片的通道数,比如:
1--灰度图片--grayImg---是-