【OpenCv】 Mat的一些简单使用技巧

本文详细介绍了如何使用C++结合OpenCV库进行矩阵的初始化、创建、赋值、求和、复制及转置等操作,适用于机器学习算法中的矩阵运算需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习的相关算法的实现需要大量使用到矩阵运算。用C++实现的话,OpenCv里面的Mat数据结构是一个很好的选择。

初始化

  • 创建cv::Mat,并且初始化cv::Scalar::all(0)
  • cv::Mat 可以直接使用cout进行输出
cv::Mat a(3, 3, CV_32FC1, cv::Scalar::all(0));
cout << a << endl;

使用数组初始化

int bArray[3][3] = { {1, 2, 3}, {4, 5, 6}, {7, 8, 9} };
cv::Mat b(3, 3, CV_8UC1, bArray);

PS: CV_8UC1代表的含义(摘抄自这里

CV_<bit_depth>(S|U|F)C<number_of_channels>

 1--bit_depth---比特数---代表8bite,16bites,32bites,64bites---举个例子吧--比如说,如
    如果你现在创建了一个存储--灰度图片的Mat对象,这个图像的大小为宽100,高100,那么,现在这张
    灰度图片中有10000个像素点,它每一个像素点在内存空间所占的空间大小是8bite,8位--所以它对
    应的就是CV_8
 2--S|U|F--S--代表---signed int---有符号整形
           U--代表--unsigned int--无符号整形
           F--代表--float---------单精度浮点型
 3--C<number_of_channels>----代表---一张图片的通道数,比如:
     1--灰度图片--grayImg---是-
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值