- 博客(2)
- 问答 (2)
- 收藏
- 关注
原创 【Enhancing Creative Generation on Stable Diffusion-based Models阅读报告】
本文提出C3(创意概念催化剂)方法,通过选择性增强Stable Diffusion模型U-Net网络中的特征图来提升生成图像的创意性,无需额外训练。该方法聚焦创造力两大维度(新颖性与可用性),在去噪过程中放大低频分量以激发创意。实验表明,C3能针对不同物体类型(如椅子的形状、服装的纹理)强化创意特征,并与ControlNet等插件兼容。研究还验证了该方法对多种创意相关提示词(如"创新"、"巧妙")的普适性,在保持一定可用性的同时显著提高新颖性。项目代码已开源,为低成本
2025-07-31 18:10:08
716
原创 Tracking through Containers and Occluders in the Wild论文阅读报告
本文提出了一种新的模型和基准TCOW,TCOW模型针对的是长期的、严重遮挡的跟踪目标。图像中的对象可以使用对象持久性的概念进行分割,这反映了即使对象不再可见也仍然存在的事实。
2023-11-24 18:01:13
117
1
空空如也
关于#python#的知识点:关于学习率的问题
2024-05-31
两个相同的物体互相遮挡时,如何确保一直追踪前一个目标
2023-11-23
写一个目标跟踪算法遇到的问题
2023-08-09
不同阶的矩阵加法运算为啥成立了
2022-09-28
JAVA相邻的字符交换,哪里错了
2020-11-12
JAVA相邻两个数交换,代码哪里错了
2020-11-12
TA创建的收藏夹 TA关注的收藏夹
TA关注的人