一个涨点发顶会的好方向:小波变换+CNN!小波变换可以作为预处理步骤,提取出关键的局部特征,加速CNN收敛并提升性能。CNN可以进一步处理小波变换提取的特征,提取高级抽象表示,用于后续的分类、识别或回归任务。因此小波变换+CNN在学术界与工业界都很热门,特别是在信号处理和图像处理等任务中,效果炸裂!
今天就这两种技术整理出了论文+开源代码,以下是精选部分论文
更多论文料可以关注:AI科技探寻,发送:111 领取更多[论文+开源码】
论文1
Using wavelet transform and dynamic time warping to identify the limitations of the CNN model as an air quality forecasting system利用小波变换和动态时间规整识别卷积神经网络模型作为空气质量预测系统的局限性
方法:
-
小波变换:使用小波变换分析时间序列数据,确定CNN模型在不同时间段(如夜间、寒冷月份和高臭氧事件)表现不佳的原因。
-
动态时间规整(DTW):通过动态时间规整距离分析,比较后处理结果与基准模型(社区多尺度空气质量模型CMAQ)的结果,评估模型预测的准确性。
-
深度卷积神经网络(CNN):构建深度CNN模型,使用气象和空气质量参数的小时变化来预测未来24小时的臭氧浓度。
-
模型验证:通过与实际观测数据的比较,使用一致性指数(IOA)评估模型性能。
创新点:
-
夜间预测性能:发现CNN模型在夜间的预测准确性比白天低20%以上,提出了定制化成本函数作为潜在解决方案。
-
高臭氧事件的识别:在高臭氧事件中,CNN模型的预测准确性显著下降,尤其是在气象变量的日变化模式较弱时。
-
后处理模型的有效性:通过后处理模型,CMAQ-CNN模型在准确性上有显著提升,预测一致性指数(IOA)超过0.85,而CMAQ模型的IOA通常低于0.7。
-
小波分析的应用:小波变换的应用揭示了在处理不平等类分布时,CNN模型的局限性,为未来的空气质量预测系统提供了改进的方向。
论文2
Wavelet Multiresolution Analysis Based Speech Emotion Recognition System Using 1D CNN LSTM Networks
Seq-LSTM与注意力机制结合用于巴西电力负荷预测
方法:
-
小波变换:利用小波变换提取语音信号的特征,克服快速傅里叶变换(FFT)在时间和频率域分辨率上的限制。
-
自编码器:使用自编码器对小波特征进行降维,减少特征的维度以提高模型的训练效率。
-
1D CNN-LSTM模型:结合1D卷积神经网络和长短期记忆网络(LSTM)进行情感分类,提取时序特征。
-
数据增强:通过添加加性白噪声进行数据增强,以提高模型的鲁棒性。
创新点:
-
特征提取效率:通过小波变换提取的特征在情感分类中表现出色,取得了81.45%的未加权准确率(UA)和81.22%的加权准确率(WA)。
-
模型性能提升:与其他时间频率表示方法相比,提出的方法在RAVDESS数据集上取得了更好的分类性能,最高UA和WA分别达到83.4%和83.7%。
-
降维效果:自编码器将小波特征的维度压缩了15.6倍,显著提高了模型的训练效率和准确性。
-
鲁棒性:通过数据增强技术,模型在处理噪声条件下的情感识别能力得到了增强,表现出更强的适应性。
论文3
Wavelet Scattering Transform and CNN for Closed Set Speaker Identification
用于封闭集说话人识别的小波散射变换和卷积神经网络
方法:
-
小波散射变换(WST):使用小波散射变换作为CNN网络第一层的固定初始化,以提取语音信号的特征。
-
卷积神经网络(CNN):在监督学习的方式下训练CNN网络的剩余层,以实现说话人识别。
-
混合架构:将小波散射变换与CNN结合,以提高在短时训练样本下的特征提取效率。
-
特征提取:利用小波散射系数在前几层捕获输入数据模式中的主导能量。
-
分类器设计:设计一个由三个卷积块和一个全连接层组成的CNN,用于从原始语音波形中学习说话人区分信息。
创新点:
-
短时训练样本的有效性:实验表明,即使在只有少量短时训练样本的情况下,提出的混合架构也能成功执行有效的特征提取,相对改进了约20%(Librispeech数据集上,相比于CNN-raw和SincNet)。
-
小波散射变换的应用:小波散射变换减少了CNN第一层的不稳定性,并扩展了MFCC表示,没有丢失信息,提供了更丰富的特征表示。
-
混合架构的深度和空间维度减少:提出的混合架构能够减少深度学习网络所需的深度和空间维度,降低了模型参数数量,相比于SincNet和CNN-Raw减少了约33%。
-
训练效率的提升:相比于SincNet和CNN-Raw网络需要2900个训练周期,所提出的架构只需要30个训练周期,显著减少了训练时间。
论文4
Wavelet-SRNet- A Wavelet-based CNN for Multi-scale Face Super Resolution
Wavelet-SRNet - 一种用于多尺度人脸超分辨率的小波基础卷积神经网络
方法:
-
小波包变换(WPT):使用Haar小波进行二维快速小波变换(FWT)来分解图像成一系列相同大小的小波系数。
-
小波系数预测:不是直接推断高分辨率(HR)图像,而是学习预测低分辨率(LR)图像对应的HR的小波系数,然后从这些系数重建HR图像。
-
三重网络结构:包括嵌入网络、小波预测网络和重建网络,分别用于特征提取、小波系数预测和HR图像重建。
-
多尺度损失函数:结合小波预测损失、纹理损失和全图像损失,以捕获人脸的全局拓扑信息和局部纹理细节。
创新点:
-
小波变换的应用:首次将单图像超分辨率问题转化为深度学习框架内的小波系数预测任务,强调高频小波系数的预测有助于恢复纹理细节。
-
灵活且可扩展的网络结构:Wavelet-SRNet能够适应不同输入分辨率的人脸和多种放大因子,实验结果表明该方法在非常低的输入分辨率下也能取得良好的超分辨率效果。
-
多尺度超分辨率的探索:在16×16或更小像素尺寸的非常低分辨率人脸图像上实现了高达16倍的放大,且在定量和定性上都优于现有的超分辨率方法。
-
鲁棒性:Wavelet-SRNet在未知高斯模糊、姿态变化和遮挡变化的情况下表现出良好的鲁棒性,定量结果(PSNR和SSIM)在多个测试集上均优于现有技术。
更多论文料可以关注:AI科技探寻,发送:111 领取更多[论文+开源码】