特征融合狂发顶会,再出神作!2025最新创新点!

特征融合是将来自不同来源、不同层次或不同表示的特征进行合并或整合,以形成新的、更具表现力的特征集合。

今天就特征融合整理出了论文+开源代码,以下是精选部分论文

更多论文料可以关注AI科技探寻,发送:111  领取更多[论文+开源码】   

论文1

SecondPose: SE(3)-Consistent Dual-Stream Feature Fusion for Category-Level Pose Estimation

SecondPose:用于类别级姿态估计的SE(3)  

一致的双流特征融合

方法:

  1. 双流特征融合:结合了对象特定的几何特征和DINOv2提供的语义类别先验,通过分层提取两种SE(3)不变的几何特征(成对距离和成对角度)来封装局部到全局的对象特定信息。

  2. 几何特征提取:通过计算点对特征(PPF)并基于面板的几何特征来构建局部到全局的几何表示。

  3. 语义特征提取:利用DINOv2提取的语义特征,提供全局信息和类别先验。

创新点:

  1. 双流特征融合:首次将对象特定的层次化几何特征与DINOv2语义特征直接融合,显著提升了类别级姿态估计的性能。

  2. SE(3)一致性:通过SE(3)一致的特征融合策略,建立了在SE(3)变换下一致的对象表示,使下游姿态估计更加准确,性能提升显著。在NOCS-REAL275数据集上,SecondPose在5°2cm和10°2cm指标上分别比VI-Net高出6.2%和3.9%。

  3. 鲁棒性:在HouseCat6D数据集上,SecondPose在3D IoU 50%阈值下比第二名VI-Net高出9.7%,显示出对复杂场景和遮挡的鲁棒性。

  4. 效率提升:通过简化姿态估计流程,SecondPose在推理速度上达到9 FPS,去除DINOv2的运行时间后,速度提升到10 FPS。

图片

论文2

Time-space-frequency feature Fusion for 3-channel motor imagery classification

时间-空间-频率特征融合用于三通道运动想象分类

方法:

  1. 时间-频率表示:使用连续小波变换(CWT)将EEG信号转换为时间-频率谱图。

  2. 时间-频率特征提取:通过浅层卷积神经网络(TSFF-img)从时间-频率谱图中提取特征。

  3. 时间-空间特征提取:利用轻量级网络架构(TSFF-raw)从时间序列EEG信号中提取时间-空间特征。

创新点:

  1. 多模态融合网络架构:提出了针对三通道运动想象EEG解码的网络架构,有效融合了时间-空间-频率特征,弥补了单模态网络在特征提取上的不足。

  2. 轻量级时间-频率特征提取:设计了轻量级的TSFF-img网络架构,相比传统的自然图像网络架构(如AlexNet、VGG和ResNet),在三通道运动想象EEG解码中更具优势。

  3. 性能提升:在BCI4-2A数据集上,TSFF-Net在仅使用三个通道的情况下,平均准确率达到了85.1%,超过了使用22个通道的经典算法。在BCI4-2B数据集上,TSFF-Net的平均准确率达到了86.4%,比现有方法提升了3.8%。

  4. 鲁棒性验证:通过实验验证了TSFF-Net在不同数据集和任务中的鲁棒性,展示了其在低通道EEG解码中的潜力。

    图片

论文3

HiFuse: Hierarchical Multi-Scale Feature Fusion Network for Medical Image Classification

HiFuse:用于医学图像分类的层次化多尺度特征融合网络

方法:

  1. 三分支层次化多尺度特征融合网络结构:提出HiFuse网络结构,结合Transformer和CNN的优势,通过多尺度层次化融合提升医学图像分类的准确性。

  2. 局部和全局特征块:设计了并行的局部特征块和全局特征块,分别高效提取不同尺度的局部空间信息和全局语义信息。

  3. 自适应层次化特征融合块(HFF块):包含空间注意力、通道注意力、残差逆MLP和快捷连接,用于自适应融合不同分支的特征。

创新点:

  1. 结合CNN和Transformer的优势:HiFuse通过并行的局部和全局特征块,分别捕获局部空间信息和全局语义信息,显著提升了分类性能。在ISIC2018数据集上,HiFuse的准确率比基线模型提高了7.6%。

  2. 自适应特征融合:HFF块通过空间注意力和通道注意力机制,自适应地融合不同尺度的特征,进一步提升了模型的性能。在Covid-19数据集上,HiFuse的准确率比基线模型提高了21.5%。

  3. 高效的特征提取:HiFuse通过层次化结构和线性计算复杂度,避免了深度网络带来的梯度消失和特征信息丢失问题。在Kvasir数据集上,HiFuse的准确率比基线模型提高了10.4%。

  4. 广泛的适用性:HiFuse在多个医学图像分类数据集上表现出色,证明了其在不同医学图像分类任务中的广泛适用性。

图片

Multi-interactive Feature Learning and a Full-time Multi-modality Benchmark for Image Fusion and Segmentation

多交互特征学习及全天时多模态图像融合与分割基准

方法:

  1. 多交互特征学习架构(SegMiF):提出SegMiF架构,通过融合子网络和分割子网络之间的中间特征交互,提升融合和分割任务的性能。

  2. 层次化交互注意力块(HIA):建立HIA块,通过细粒度映射确保两个任务之间的重要信息充分交互。

  3. 动态权重因子:引入动态权重因子,自动调整每个任务的权重,平衡特征交互,避免手动调整的复杂性。

创新点:

  1. 联合优化融合与分割任务:SegMiF通过联合优化图像融合和分割任务,实现了视觉上吸引人的融合图像和准确的场景解析。在FMB数据集上,SegMiF的分割mIoU比现有方法平均提高了7.66%。

  2. 层次化交互注意力机制:HIA通过多头注意力机制,同时保留模态特征并增强语义特征,显著提升了融合和分割任务的性能。在MFNet数据集上,SegMiF的mIoU比现有方法提高了1.45%。

  3. 动态权重因子:动态权重因子通过自动调整任务权重,优化了特征交互,避免了手动调整的复杂性,进一步提升了模型的性能。

  4. 丰富的多模态基准数据集:FMB数据集包含丰富的场景和详细的标注,为图像融合和分割任务提供了高质量的训练和评估资源。

图片

 

更多论文料可以关注AI科技探寻,发送:111  领取更多[论文+开源码】   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值