基于ZX演算的混合量子 - 经典电路简化
1 引言
量子算法的描述通常涉及量子操作与经典数据在输入、输出或中间步骤中的交互,例如通过测量或状态制备。像量子纠错和量子断言等应用,会在量子计算中明确引入经典测量和逻辑。一般来说,量子编程语言允许测量和经典控制的量子算子与幺正门混合使用。此外,有猜想认为任何多项式时间的量子算法都可以由对数多项式深度的量子计算与多项式深度的经典计算交错模拟。因此,人们对在电路中考虑这种混合结构很感兴趣。
量子电路的一种流行替代表示是基于ZX演算,这是一种形式化的图示语言,能更细致地表示量子电路,已成功应用于多种领域。Carette等人引入了ZX⁺演算,通过在图中添加丢弃基元,使其能够表示与经典环境交互的操作。
大多数常见的优化策略仅关注纯量子片段,而忽略了混合量子 - 经典结构。Duncan等人引入的一种纯优化方法使用ZX演算应用粒度化的重写规则,我们称之为Clifford优化算法,其重写步骤保留了一种称为gFlow的图属性,这对于将ZX图提取回电路是必需的。
本文将Duncan等人的纯Clifford优化算法自然扩展到使用ZX⁺演算的混合量子 - 经典电路。我们的电路优化过程在简化过程中忽略量子和经典导线的差异,将连接表示为单一类型的边,从而将整个混合系统作为一个均匀的图进行优化。在物理量子计算机中,经典操作通常比其量子对应操作更容易实现,量子模拟器也可以利用导线携带经典数据的信息来简化操作。因此,在可能的情况下,在结果电路中提取经典门是有益的。
本文的贡献如下:
- 指定将混合电路转换为具有gFlow的特殊图形式的ZX⁺图,将输入的经典段限制为奇偶电路。
- 引入一些保留gFlow的重写规则