
mmlab
文章平均质量分 67
云朵不吃雨
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
加权损失函数解决不平衡数据分类问题
不平衡数据集是分类任务中的一个常见问题,其中一个类中的实例数量明显小于另一类中的实例数量。这将导致有偏差的模型在少数群体中表现不佳。加权损失函数是训练模型时使用的标准损失函数的修改。权重用于对少数类别的错误分类分配更高的惩罚。这个想法是通过增加该类别的错误分类成本来使模型对少数类别更加敏感。实现加权损失函数的最常见方法是为少数类分配较高的权重,为多数类分配较低的权重。权重可以与类别的频率成反比,使得少数类别获得较高的权重,而多数类别获得较低的权重。原文链接。原创 2023-11-12 19:27:20 · 3594 阅读 · 1 评论 -
mmseg
最近又开始用mmsegmentaion;在配置环境过程中遇到了一个低级错误,之前一直以为是mmcv版本问题,后来发现是__init__.py中assert (mmcv_min_version <= mmcv_version < mmcv_max_version),这段代码的问题;修改为:assert (mmcv_min_version <= mmcv_version <= mmcv_max_version),即可。原创 2025-03-08 21:26:24 · 218 阅读 · 0 评论 -
AUTODL配置百度网盘数据传输
AUTODL使用1.配置百度网盘开放平台2.接入并创建应用3.创建应用4.添加授权原创 2024-11-05 20:31:35 · 1180 阅读 · 0 评论 -
open-cd中的changerformer网络结构分析
通过上述内容,我们可以根据参数文件中的内容提取opencd中任意网络结构,或采用timm来设置主干网络结构,或添加到自己的训练框架中如pytorch_segmentation中进行训练。相应的,我们可以进一步去学习mmalb的框架结构。原创 2024-10-17 22:12:53 · 1469 阅读 · 0 评论 -
mmlab——跨项目调用主干网络
例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。原创 2024-08-21 22:00:29 · 285 阅读 · 0 评论 -
mmalb-debug:assert ‘mix_results‘ in results
使用 MultiImageMixDataset 作为包装(wrapper)去混合多个数据集的图片。 MultiImageMixDataset可以被类似 mosaic 和 mixup 的多图混合数据増广使用。MultiImageMixDataset 与 Mosaic 数据増广一起使用的例子:reference1reference2-mmseg文档原创 2024-07-30 14:46:03 · 505 阅读 · 0 评论 -
MMLab-dataset_analysis
mmyolo、mmsegmentation等提供了数据集分析工具。原创 2024-07-14 19:38:53 · 1029 阅读 · 0 评论 -
debug-mmlab
solution:原创 2024-07-03 22:11:59 · 373 阅读 · 0 评论 -
mmcv环境配置
mmcv、mmsegmentation、mmdet、mmpred,环境配置原创 2023-07-06 21:03:58 · 797 阅读 · 1 评论 -
mmlab之模型冻结训练
在深度学习任务中,有时我们需要在岩有任务基础上对模型进行微调,这需要对网络的主干进行冻结,我在阅读帮助文档时发现,mmlab部分主干网络可以支持参数实现主干网络的冻结。目前网络应该只支持主干网络进行冻结。原创 2023-08-17 23:13:02 · 724 阅读 · 3 评论 -
mmlab之自定义数据处理
mmcv是mmlab系列的底层支持架构之一,主要进行数据读取、数据变换、卷积神经网络、以及一些nms之类的基础算子。其主要采用register实现相应模块的继承。下面将以文档中的案例进行展开介绍要实现一个新的数据变换类,需要继承 BaseTransform,并实现 transform 方法。从而,我们可以实例化一个 MyFlip 对象,并将之作为一个可调用对象,来处理我们的数据字典。又或者,在配置文件的 pipeline 中使用 MyFlip 变换......原创 2023-08-17 22:49:20 · 381 阅读 · 1 评论 -
mmlab之调用mmpretrain预训练模型
MMLab的MMPretrain中集成了主流的自监督、对比学习模型,通过对现有数据进行预训练,来提升下游任务的性能。这里对下游任务如何调用已经训练好的预训练权重模型进行介绍,原文链接可参考帮助文档。官方帮助文档已经写得很清楚了,帮助文档内容有点多,熟悉一下帮助文档的整体结构,关键的部分看的时候尽量把整个帮助文档都扫一遍吧,有个印象更好找一些,具体函数api这些用的时候再找就好。原创 2023-08-27 12:23:42 · 1296 阅读 · 0 评论 -
MMLab——train.py:命令行与非命令运行模型
MMLab默认使用命令行运行参数文件,这使得在VScode命令行环境运行时无法进行断点调试,需要引入pdb包进行打印调试,其实初学者只需要在原始的train.py文件进行参数修改就可以轻松进行断点调试。注意:config.py是参数文件,不能进行调试。原创 2023-10-09 21:06:40 · 282 阅读 · 0 评论 -
MMsegmentation-权重随机初始化
mmlab下游分支调用权重随机初始化使用参考mmengine的说明文档。原创 2024-02-06 12:11:14 · 636 阅读 · 0 评论 -
mmsegmentation参数配置实用详解
mmsegmentation实用参数配置文件,主要包括基础环境配置,学习率调整,优化器、数据流;对模型部分进行了删减与简化384,384,#孪生TF主干网络#在主干网络中需要设置channel#冻结训练设置:0-3可以进行冻结设置# 模型采用预训练权重进行初始化#init_cfgdictnum_classes = 4 model = dict(type = 'EncoderDecoder' , data_preprocessor = data_preprocessor , #孪生TF主干网络。原创 2023-11-02 21:08:33 · 1068 阅读 · 0 评论 -
mmlab之模型预训练(mmpretrain——MAE参数配置)
通过模型预训练提升模型收敛速度首先提示一点:mmlab类函数不能重复注册;这个问题出现在我在添加新的数据类时,直接复制了原有的数据类,忘记修改类名称导致的报错遥感多通道影像在应用mmlab进行模型训练时,主要面对的修改参数就是通道数。原创 2023-11-12 21:00:05 · 768 阅读 · 0 评论 -
mmsegmentation——RS_Inference
mmseg支持利用多线程进行遥感影像的滑动预测。原创 2024-05-20 22:58:37 · 376 阅读 · 0 评论