收藏此文,今年你需要的学习资源绝对够了!

640?wx_fmt=gif


作者 | Robbie Allen

编辑 | Jane

出品 | AI科技大本营


今天,AI科技大本营为大家准备了目前看到的最好的一份学习资源。收集这些资源的作者 ,Robbie Allen,InfiniaML 公司 CEO,也是UNCCS的博士,从去年开始正在筹备关于 machine learning practice 的新书。在他开始攻读博士学位和筹备新书的过程中,一直在搜索机器学习、NLP 等各方面优秀的学习资源。去年,他公开过自己收藏的近 150 种学习资源,现在一年多过去了,各领域不断出现尖端技术和教程,他的收藏列表已经更新并扩充至今年的近 200 种。


为什么说这里面的内容是自己在所有的资源中挑选出来最好的?首先这份收藏清单并不是把在网上可以搜索到的所有学习资料直接罗列,作者主要从机器学习、NLP、Python 和数学四部分的内容介绍给大家,并且每个部分细分了不同的主题,每个主题有 5~6 个学习资源,力求从不同角度与不同的呈现形式(如有教程、幻灯片、博客文章等)使内容具有多样性。


根据作者内容,AI科技大本营还特别整理了一张清晰的学习树给大家。


640?wx_fmt=png



1.机器学习及相关内容


1.1 机器学习


640?wx_fmt=png


1.2 激活函数与损失函数


640?wx_fmt=png


1.3 偏差


640?wx_fmt=png


1.4 感知


640?wx_fmt=png


1.5 回归


640?wx_fmt=png


1.6 梯度下降


640?wx_fmt=png


1.7 生成学习


640?wx_fmt=png


1.8 支持向量机


640?wx_fmt=png


1.9 反向传播


640?wx_fmt=png


1.10 深度学习


640?wx_fmt=png


1.11 优化方法与降维方法


640?wx_fmt=png


1.12  LSTM


640?wx_fmt=png


1.13 CNN


640?wx_fmt=png


1.14 RNN


640?wx_fmt=png


1.15 强化学习 RL


640?wx_fmt=png


1.16 生成对抗网络 GANs


640?wx_fmt=png


1.17 多任务学习


640?wx_fmt=png


2.NLP及相关内容


2.1 NLP


640?wx_fmt=png


2.2 深度学习与 NLP


640?wx_fmt=png


2.3 词向量


640?wx_fmt=png


2.4 编码-解码


640?wx_fmt=png


3.Python 及相关内容


3.1示例


640?wx_fmt=png


3.2 函数与 numpy


640?wx_fmt=png


3.3 算法库


640?wx_fmt=png


3.4 TensorFlow


640?wx_fmt=png


3.5 Pytorch


640?wx_fmt=png


4.数学及相关内容


4.1 机器学习中的数学


640?wx_fmt=png



4.2 线性代数


640?wx_fmt=png


4.3 概率论


640?wx_fmt=png


4.4 微积分


640?wx_fmt=png


鉴于数量较多,每一部分的学习资源我们只给出了标题与来源,想了解更多大家可以从原文中进行访问。


原文链接:

https://medium.com/machine-learning-in-practice/over-200-of-the-best-machine-learning-nlp-and-python-tutorials-2018-edition-dd8cf53cb7dc



 ——【完】——


在线公开课 知识图谱专场

精彩继续


时间:8月23日 20:00-21:00

添加微信csdnai,备注:公开课,加入课程交流群

参加公开课,向讲师提问,即有机会获得定制T恤或者技术书籍


640?wx_fmt=jpeg

AI人工智能培训资料(培训PPT+示例代码),资料很大将近3GB,供大家下载学习参考。 1-Python基础(教程+代码) 2-Python数据分析基础(教程+代码) 3-数字图像处理 1)图像处理基础 2)边缘检测 3)形态学图像处理 4-深度学习算法与框架 代码 1)神经网络 2)卷积神经网络 3) 循环神经网络 4)深度学习框架以及应用 卷积神经网络案例 5-AI云服务的调用与搭建 1) 人工智能服务部署 2) 基于AI云服务的快速应用开发 3) 开源项目介绍与实战 6-数据挖掘与数据分析 代码 数据挖掘数据分析-5-分类2-贝叶斯算法 数据挖掘数据分析-1-导论 数据挖掘数据分析-2-机器学习 数据挖掘数据分析-3-数据预处理 数据挖掘数据分析-4-数据仓库 数据挖掘数据分析-5-分类1-kNN 数据挖掘数据分析-5-分类3-决策树ID3 数据挖掘数据分析-5-分类3-C4.5-CART(选) 数据挖掘数据分析-5-分类4-神经网络 数据挖掘数据分析-5-分类4-bp算法(选) 数据挖掘数据分析-5-分类5-支撑向量机SVM 数据挖掘数据分析-6-回归1-线性回归 数据挖掘数据分析-7-聚类 7-目标检测 代码 8-YOLOv3解析 1-VOC数据集 2-COCO数据集 3-目标检测概述 4-mAP 5-faster rcnn 6-YOLOv1解析 7-YOLOv2解析 8-人脸检测与识别 代码 face_recognition 1-adaboost 2-人脸数据集简介 3-ArcFace 9-seq2seq模型 convert seq2seq seq2seq with attention 数字图像处理串讲1 数字图像处理串讲2 10-bert模型 Attention Is All You Need BERT Pre-training of Deep Bidirectional Transformers for Language Understanding bert Transformer 11-其他 机器学习之支持向量机 人工智能技术基础及运营商应用 人工智能-真题集 人工智能-论文集
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值