迭代模型(Iterative Model)

迭代模型源自20世纪50年代末期的软件开发实践,强调通过多次迭代产生可发布的子集产品,以降低风险并提高效率。每次迭代涵盖需求、分析、设计、实施和测试等流程,确保产品质量并适应需求变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是迭代模型

      早在20世纪50年代末期,软件领域中就出现了迭代模型。最早的迭代过程可能被描述为“分段模型(stagewise model)”,其背景是H.D.Benington领导的美国空军SAGE项目

  迭代模型是RUP(Rational Unified Process,统一软件开发过程,统一软件过程)推荐的周期模型。在RUP中,迭代被定义为:迭代包括产生产品发布(稳定、可执行的产品版本)的全部开发活动和要使用该发布必需的所有其他外围元素。所以,在某种程度上,开发迭代是一次完整地经过所有工作流程的过程:(至少包括)需求工作流程、分析设计工作流程、实施工作流程和测试工作流程。

  实质上,它类似小型的瀑布式项目。RUP认为,所有的阶段(需求及其它)都可以细分为迭代。每一次的迭代都会产生一个可以发布的产品,这个产品是最终产品的一个子集。迭代的思想如下图所示。

RUP 

  在现代过程方法XP(eXtreme Programming,极限编程)、RUP无一例外地都推荐、主张采用能显著减少风险的迭代模型。美国国防部原本提倡瀑布过程和观点,在发现那么多采用了瀑布模型的失败的项目之后,不但放弃了对它的要求,而且从1994年的报告开始,积极地鼓励采用更加现代化的迭代模型来取代瀑布模型做法。同时,中国中科院也提倡选用迭代模型。

  对众多的开发模型和过程方法,及权威机构的看法,企业应选择什么样的开发模型,应慎重对从以下几方面进行考虑:

  1、RUP虽然内容极其丰富,定义了选起、精化、构建、产品化4个阶段和业务建模、需求、分析设计、实现、测试、部署等9个工种,提供了一大堆的文档模板,但极易让人误解是重型的过程,实施推广有一定难度。

  2、再次,在质量管理方面:以实现系统架构、核心功能目标的迭代产品生的工作成果作为质量控制重点。每次迭代进行系统集成、系统测试,达到对软件质量的持续验证。每次系统测试,需要回归测试前一次迭代遗留发现的问题。每次迭代发布的小版本组织客户(包括内部客户、外部客户)进行评价,通过演示操作等方式,评价该次迭代是否达到预定的目标,并以此为依据来制定下一次迭代的目标。

  3、最后,在其他方面:每次迭代成果须进行配置管理,版本控制很重要。在整个迭代过程中风险无处不在,建议每周作一次风险跟踪。同时通过重点关注进度、工作量、满意度、缺陷等数据收集,关注每次迭代情况。

  总之,选择一个合适的生命周期模型,并应用正确的方法,对于任何软件项目的成功是至关重要。企业在选择开发模型应从项目时间要求、需求明确程度、风险状况等选择合适的生命周期模型。

 

迭代模型的选择使用条件

1、在项目开发早期需求可能有所变化。

  2、分析设计人员对应用领域很熟悉。

  3、高风险项目。

  4、用户可不同程度地参与整个项目的开发过程。

  5、使用面向对象的语言或统一建模语言(Unified Modeling Language,UML)。

  6、使用CASE(Computer Aided Software Engineering,计算机辅助软件工程)工具,如Rose(Rose是非常受欢迎的物件软体开发工具。)。

  7、具有高素质的项目管理者和软件研发团队。

 

迭代模型的优点

与传统的瀑布模型相比较,迭代过程具有以下优点:

  1)降低了在一个增量上的开支风险。如果开发人员重复某个迭代,那么损失只是这一个开发有误的迭代的花费。

  2)降低了产品无法按照既定进度进入市场的风险。通过在开发早期就确定风险,可以尽早来解决而不至于在开发后期匆匆忙忙。

  3)加快了整个开发工作的进度。因为开发人员清楚问题的焦点所在,他们的工作会更有效率。

  4)由于用户的需求并不能在一开始就作出完全的界定,它们通常是在后续阶段中不断细化的。因此,迭代过程这种模式使适应需求的变化会更容易些。

### 标注迭代模型的概念及其在机器学习中的应用 #### 1. 标注迭代模型的基本概念 标注迭代模型是一种基于数据标注和模型优化的循环改进机制。它通常用于解决初始训练数据不足或者标注质量不高的问题。该模型通过不断引入新的高质量标注数据来逐步提升模型性能[^2]。 #### 2. 实现方法概述 标注迭代模型的具体实现可以分解为以下几个方面: - **数据收集与初步标注** 首先,从实际场景中获取未标注的数据集,并对其进行初步的人工或自动标注处理。这些标注后的数据将成为模型的第一批训练样本[^3]。 - **构建基础模型** 使用上述已标注的数据训练一个基础模型。此阶段可以选择多种常用算法,例如逻辑回归、支持向量机、决策树等作为起点[^1]。 - **预测与筛选新数据** 利用当前版本的基础模型对剩余未标注数据进行批量预测。根据预测结果的概率分布设定一定阈值,挑选出高置信度的样本加入到已有训练集中[^4]。 - **重新训练与验证** 将新增加的可靠样例补充至原训练集合后再次执行模型训练流程;随后采用独立测试集评估更新版模型的表现指标(如准确率、召回率等)。如果满足预设条件则结束整个过程,否则返回继续扩展训练资料直至达到预期效果为止。 #### 3. 技术细节说明 以下是关于如何有效实施以上各环节的技术要点描述: ##### 数据增强策略 为了缓解因单一来源造成的数据局限性,在每次扩充过程中可考虑运用一些高级技巧比如合成少数类别过采样技术(SMOTE),从而改善不平衡现象并促进泛化能力提升。 ##### 自动化工具链整合 现代软件框架允许我们将多个子任务无缝衔接起来形成端到端的工作流自动化方案。例如TensorFlow Extended(TFX) 或者 Apache Airflow 提供了丰富的组件库用来管理复杂的依赖关系以及调度定时作业计划表等等。 ```python import tensorflow as tf from sklearn.model_selection import train_test_split # 假设有原始特征X和标签y X_train, X_unlabeled, y_train, _ = train_test_split(X, y, test_size=0.8) def iterative_training(model_class, max_iterations=5): model = model_class() for i in range(max_iterations): # 训练基本模型 model.fit(X_train, y_train) # 对未标记数据做推断 predictions = model.predict_proba(X_unlabeled) # 找到最自信的预测实例 confident_indices = (predictions.max(axis=1) >= CONFIDENCE_THRESHOLD).nonzero()[0] new_labeled_data = X_unlabeled[confident_indices], np.argmax(predictions[confident_indices], axis=-1) # 更新训练集 X_train = np.vstack([X_train, new_labeled_data[0]]) y_train = np.hstack([y_train, new_labeled_data[1]]) iterative_training(RandomForestClassifier) ``` #### 总结 综上所述,标注迭代模型不仅有助于克服传统一次性静态建模方式存在的缺陷,而且还能显著降低长期维护成本同时保持较高的业务适应灵活性。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值