动态规划初步

动态规划之钢条切割

动态规划的设计

1.      刻画最优解的结构特征

2.      递归地定义最优解的值

3.      计算最优解的值,通常采用自底向上的方法

4.      利用计算的信息构造一个最优解

钢条切割

不同长度的的钢条,价格不同,切割钢条使价格最高:

长度与价格相关表如下:

长度i

1

2

3

4

5

6

7

8

9

10

价格pi

1

5

8

9

10

17

17

20

24

30

 

设有一段钢条长度为 n,求其最大的价格。

 

递归方法(自顶向下)

 

public class CutBars {

	public static void main(String[] args) {
		int[] p={-1, 1, 5, 8, 9, 10, 17, 17, 20, 24, 30};
		int count = 0;
		count =cut(p, 10);
		System.out.println(count);
	}

	public static int cut(int[] p, int n){
		if(n==0){
			return 0;
		}
		
		int q = -1;
		for(int i = 1; i<=n; i++){
			q = max(q,p[i]+cut(p,n-i));
			
		}
		
		return q;
	}
	
	public static int max(int a, int b){
		if(a>=b)return a;
		else return b;
	}
	
}

评价:极其浪费时间做了多次的重复运算。O(2^(n-1))

自底向上动态规划方法:

 

public classCutBars2 {
 
    public static void main(String[] args) {
        int[] p={-1, 1, 5, 8, 9,10, 17, 17, 20, 24, 30};
        int count[];
        count= cut(p, 10);
        for(int i: count){
            System.out.println(i);
        }
       
    }
 
    public static int[] cut(int[] p, int n){
        int[] r ={0,0,0,0,0,0,0,0,0,0,0};
       
        int q;
        for(int j=1; j<=n; j++){
            q= -1;
            for(int i=1; i<=j; i++){
                q= max(q, p[i] + r[j-i]);
            }
            r[j]= q;
        }
        return r;
    }
   
    public static int max(int a, int b){
        if(a>=b)return a;
        else return b;
    }
   
}

 

评价:效率比较高为O(N*N)



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值