
Numpy
daimashiren
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Numpy中np.indices函数用法详解
np.indices官方文档定义如下:def indices(dimensions, dtype=int, sparse=False): """ Return an array representing the indices of a grid. Compute an array where the subarrays contain index values 0, 1, ... varying only along the corresponding axis..原创 2020-12-15 17:05:37 · 20216 阅读 · 1 评论 -
Numpy中reshape和resize的区别
区别:np.reshape()作用是将原来的数组变换形状,不改变数组元素数量,要求更改后的数组元素总数不变。 np.resize()作用是改变数组的大小和形状,会改变数组元素数量,如果更改后的数组元素比原数组的多,则用原数组中的元素充填补齐。实例:In:import numpy as npa = np.arange(9)b = np.reshape(a,(3,3))c = np.resize(a,(5,5))print(b)print()print(c)Out:原数组:原创 2020-12-14 20:26:36 · 1669 阅读 · 0 评论 -
Numpy中关于np.rollaxis和np.swapaxes的理解
numpy.rollaxis(arr, axis, start)arr:数组 axis:要滚动的轴,其它轴的相对位置不变 start:默认为零,要滚动到目标位置。举例说明:>>> a = np.ones((3,4,5,6))>>> np.rollaxis(a, 3, 1).shape #把数组a的3轴滚动到1轴位置,其他轴相对位置相对不变(3, 6, 4, 5)>>> np.rollaxis(a, 2).shape .原创 2020-12-14 18:47:33 · 3573 阅读 · 0 评论 -
Numpy中数组的广播机制总结
Numpy中的对于数组间的算术运算采用“元素一 一对应”的计算机制,因而一般要求两个数组的形状相同才能进行数组间的算术运算,但是在某些情况中,Numpy中允许符合一定规则的不同形状的数组进行算术运算。广播的核心规则如下:两数组的后缘维度轴长度相同(满足低维数组是高维数组的某一内层元素,低维数组才能被拓展成和高维数组一样的形状) 两数组的后缘维度中有任意个长度是1或缺失 输出数组的形状是输入数组形状的各个维度上的最大值上面的规则可能看起来比较难懂,简单来说就是低维数组要想被拓展成和高维数组一样的形状原创 2020-12-12 10:46:59 · 492 阅读 · 0 评论 -
Numpy多维数组的点乘规律总结
Numpy中数组的点乘用函数dot()来实现,而单个*则表示的是数组对应元素的乘法。一维情况:In:a = np.array([1,2,3])b = np.array([1,2,3])print(a.dot(b))Out: 14一维数组点乘相当于向量乘法,计算结果为一个数(标量),注意要是等长的一维数组才能点乘二维情况:In:a = np.array([[1,2,3], [1,2,3]])b = np.array([[1,2,3],原创 2020-12-10 20:29:09 · 8796 阅读 · 0 评论 -
Numpy数组拼接总结
方法一:Numpy中使用级联函数concatenate()来连接两个数组,可选参数为连接轴(连接维度) axis,axis默认为0,即默认在第0维上进行元素的连接。级联函数使两数组指定维axis上的对应位置的元素相连接,若指定axis大小而时同维度上元素个数对应不相同时将会报错! 指定不同axis所得到的新数组形状不同注:Numpy中维度从第0维开始方法二:使用堆栈函数stack()来连接数组,可选参数仍为连接轴axis,axis默认大小为0。使用堆栈函数stack()连接数组与..原创 2020-11-30 21:41:37 · 5306 阅读 · 1 评论 -
Numpy数组切片总结
# -*- coding: utf-8 -*-import numpy as npb = np.array([[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], [[13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24]], [[25, 26, 27, 28], [29, 30, 31, 32], [33, 34, 35, 36]], ...原创 2020-11-29 22:15:53 · 882 阅读 · 1 评论