线性代数
-
张量:一般的,一个数组中的元素分布在若干维坐标的规则网格中,我们称之为张量。
-
矩阵与向量相加:在深度学习中,我们允许矩阵和向量相加,产生另一个矩阵:C=A+b,其中Ci,j=Ai,j+bj。换言之,向量b和矩阵A的每一行相加。(这里隐式地复制向量b到很多位置的方式,称为广播)
-
元素对应乘积(Hadamard乘积):两个矩阵中对应元素的乘积。
-
矩阵乘积满足结合律,但是不满足交换律。
-
标量可以看作只有一个元素的矩阵,标量的转置等于它本身。
-
生成子空间:一组向量的生成子空间,是原始向量线性组合后所能抵达的点的集合。(确定Ax=b是否有解,相当于确定向量b是否在A列向量的生成子空间中。这个特殊的生成子空间被称为A的列空间或者A的值域)
-
奇异的:一个列向量线性相关的方阵被称为奇异的。
-
范数(包括Lp范数):是将向量映射到非负值的函数。直观上来说,向量x的范数衡量原点到x的距离。(当机器学习问题中零和非零元素之间的差异非常重要时,通常会使用L1范数)
-
最大范数:表示向量中具有最大幅值的元素的绝对值。
-
Frobenius范数:衡量矩阵的大小。
-
对角矩阵:只在主对角线上含有非零元素,其他位置都是零。我们用diag(v)表示对角元素由向量v中元素给定的一个对角方阵。
-
对称矩阵:转置和自己相等的矩阵。
-
正交:如果x的转置和y的乘积等于0,那么向量x和向量y互相正交。在Rn中,至多有n个范数非零向量互相正交。如果这些向量不但互相正交,而且范数都为1,那么我们称它们是标准正交。
-
正交矩阵:行向量和列向量是分别标准正交的方阵,即A的转置与A的乘积为单位矩阵,且等于A与A的转置的乘积(这意味着A的逆矩阵与A的转置相等)。<