我在大厂做内包

熟悉白牙的读者可能知道,我去年9月份来到了美团Keeta团队,做外卖出海业务,回顾了这 10 个月做的事,发现大部分时间我在做内包。

你可能有疑惑,啥叫内包?那就不得不提下外包,外包是将业务或任务委托给外部独立的公司或个人处理,而内包是将业务或任务分配给公司内部的另一部门或团队来完成。两者的主要区别在于执行方:外包是外部供应商或自由职业者,内包是内部员工或部门。

下面白牙会详细介绍,为啥说感觉一直在做内包

白牙开始在用户增长团队做广告业务,不过团队的广告业务还比较原始,没有做程序化投放平台,再加上合作的海外的广告媒体没有国内成熟,国内有头条巨量引擎、腾讯广点通等。

我们想做 RTA,但合作媒体能提供的能力其实不是真正的 RTA 广告,后续就暂时搁置了,我的人力也暂时空出来了。

这时同一个 +2 团队下的精准营销团队有个需求,发现给用户离线注券和用户用券没办法用一套判断逻辑,这就会出现一个问题,发券时判断用户可用,用券时却用不了,从而导致客诉,所以急需一个 id-mapping 的能力来打平发券和用券的判断逻辑。

最后这件事落到了我头上,why ? 这个能力只有他们团队用,为啥不自己做呢?但转念一想,入职后还没正经做一个需求呢,正好抓住这次赶紧熟悉下全流程,丝滑开启内包第一站。

在这个需求测试阶段,我被告知同一个+2团队下的补贴团队要做一个非常重要的业务-搭售,需要我去支持一下,这个业务说白了是在用户点外卖提单时推荐优惠券一起售卖,涉及到的券包正向预发、交易、履约、售后逆向交易,都需要我出方案和开发,还是一个倒排期需求,周四我还在id-mapping的需求上,还没上线,下周一就要技术方案评审了,你就看多紧急吧,但我完全没接触过券包售卖业务,还要了解他们一期的逻辑都有什么,怎么实现的。

当时我都懵逼了,这摊上事儿了呀,而且还产生了抵触情绪,刚好当时在读《凡事发生皆有利于我》这本书,从书中我学到了当你遇到坏事或麻烦事时,请记得转换自己的思维方式,从“为什么是我”的受害者思维变为“这件事能教给我什么”的成长型思维,把它当作人生的礼物,只是带有困难的包装而已。这不是精神胜利法,而是给自己传递积极的信号,让自己更豁达的面对周围的一切。

刚好此刻我就有“为什么是我”的想法,但这种想法只会让我烦躁,我也改变不了什么,如果换成“这件事能教给我什么”能让我聚焦当下的问题,最终利于解决问题,我照着做了,来到了内包第二站。

我周四晚上把id-mapping的需上完线,周五、周六日加班,赶紧熟悉业务和代码、出方案,期间我也听了这个业务其他团队的方案评审,快速往大脑里灌内容,起初真的听不懂他们说什么,但功夫不负有心人,不逼自己一把,你都不知道自己的潜力有多大,最终我周一完成了方案评审,项目如期完美交付,认识了很多合作的同学,也得到了领导和同事的认可,这件事后,我的自信心提升了,心态也变了一些,之前突然有啥事落到我头上,我真的很恐惧,现在没那么恐惧了。最终,我留在了这个团队。

刚做完这个需求,领导又让我负责券膨胀(美团也有这个业务,一张面额小的券膨胀到面额大的券)的业务,这个不是内包了,团队份内的事儿,这次也是方案开发一条龙,开发完后因为手术短暂休息了小两周,但代码质量还不错,没咋影响测试进度,手术回来后完美交付上线,可以说我是最了解膨胀业务的人,这件事进一步驱散了一些恐惧。

做完券膨胀业务之后,零零散散做了一些需求,不过都不大,keeta 忙着开国,券包售卖的业务需求暂时少了,而且还经历了一次组织架构调整,我们团队人变少了,短期人力闲置就需要找事儿做,领导给我们分了 TG,我的 TG 是 AI 应用探索,刚接到这个一头雾水,不知道能做些什么,难道为了做而做吗?但这种想法只会让人消极,我就把目光放到现在团队有啥痛点嫩管用 AI 来解决,发现排查问题流程比较复杂,刚好当时同事也在做相关探索,她做了一个查询关键信息的页面,用 nocode.cn,美团开源了,你可以去看看,很喜欢它的 slogan “一句话,呈所想”。但这个工具有一定的使用门槛,需要知道什么问题要看哪些数据,还要做一些分析,而且如果人不在电脑旁,需要开vpn,在手机上用这着也不太方便,即使给运营宣讲了,但她们还是一头雾水。

我找到了突破点,我可以开发一个大象机器人,然后绑定agent,agent绑定工作流、知识库,客服直接把用户的问题和关键信息发给机器人,机器人自动识别意图路由到对应的工作流,把分析的结果和关键数据返回,非常直观,客服一看就懂,推广给客服后,她们非常满意。我也快速学了AI 相关的知识,果然最快的学习方法就是用它,然后带着问题学。

在异国他乡支持开国的同事遇到一个痛点,他们在开国路测时反馈问题路由问题比较麻烦,希望能通过一个高效的方式支持路测反馈问题,并根据问题路由到对应的团队,并创建 TT 工单,不同的 +2 下的一个团队,他们有一个大象 AI 机器人,具备一些能力,但需要改造。但复杂这个机器人的同事短时间出不来,前方要的又比较急,嗯,不出意外,这事儿又落到了我头上,来到了内包第三站。

因为之前我调研过这个项目,有一定了解,所以对齐需求后很快出完方案、开发,在测试环境验证通过,让提需求的同事体验,他反馈很丝滑,还在群里,当着我+1、+2领导表扬我,不得不说,这人能处,哈哈。这次经历也有收获,而且这个项目的后续迭代也是我跟。

这个路测的项目还没上线,新的活又来了,来到内包第四站,需要我去支持广告团队,对就是我刚入职美团加入的那个团队,哈哈,缘分妙不可言。他们想做创意平台,虽然境内有现成的,但需要他们改造,比如支持国际化,但不知为什么最后没有聊妥,可能没人力,也可能大家目标不同,最后的结论是他们可以把代码分享出来,Keeta 自己改造。

这不是重复造轮子吗?希望美团高层领导能看到这篇文章,解决下这个问题吧,不都是一个公司的吗?当然不是美团一家公司有这问题,腾讯的问题更大,美团算是把中台做的很好的公司了。

这个活儿一点不好做,我是前天下午开始了解这个需求,现在还是懵的,而且也是一个倒排期的需求,要的很急,开发人力又不够,目前只有我一个人,其实我是有疑惑的,为什么不是他们团队内部先解决这个问题,他们团队内部有三个方向,为什么不调整资源来支持这个项目?也可以通过加班、提高效率等方式,而不是从外面的团队借人吧,我在 58 同城 3 年,腾讯 3 年多,几乎没遇到过这事儿,可能我比较幸运,在前两家公司都是一个项目做了 3 年。

后面我好像明白了,为啥美团出现这种情况。

一是美团是把活水机制做做得最好的公司,没有之一,美团的活水比例还是很高的,也比较容易,在虽然腾讯也有活水机制,但坑很少,要求一点不比外面面试低,我也很少听到有人活水。

二是美团强调内部资源调配,只要有新业务,会优先从其他业务调人来支持,比如之前的美团优选,以及现在的keeta,都是这样,当然有的是主动支援,有的是被动支援,但不管怎样,可以做到资源利用最大化。

我暂时判断不了这种用人方式的好坏,今天分享这些也不是吐槽,如果我的领导看到,别多想,就是想记录下,觉得挺有意思的体验。但不管怎样,我成长了,不惧怕事儿了,我会以“凡事发生皆有利于我”的想法看待这些事,跟着做事成才,希望这些经历能带给你一点启发。

内容概要:本文档详细介绍了一个基于MATLAB实现的跨尺度注意力机制(CSA)结合Transformer编码器的多变量时间序列预测项目。项目旨在精准捕捉多尺度时间序列特征,提升多变量时间序列的预测性能,降低模型计算复杂度与训练时间,增强模型的解释性和可视化能力。通过跨尺度注意力机制,模型可以同时捕获局部细节和全局趋势,显著提升预测精度和泛化能力。文档还探讨了项目面临的挑战,如多尺度特征融合、多变量复杂依赖关系、计算资源瓶颈等问题,并提出了相应的解决方案。此外,项目模型架构包括跨尺度注意力机制模块、Transformer编码器层和输出预测层,文档最后提供了部分MATLAB代码示例。 适合人群:具备一定编程基础,尤其是熟悉MATLAB和深度学习的科研人员、工程师和研究生。 使用场景及目标:①需要处理多变量、多尺度时间序列数据的研究和应用场景,如金融市场分析、气象预测、工业设备监控、交通流量预测等;②希望深入了解跨尺度注意力机制和Transformer编码器在时间序列预测中的应用;③希望通过MATLAB实现高效的多变量时间序列预测模型,提升预测精度和模型解释性。 其他说明:此项目不仅提供了一种新的技术路径来处理复杂的时间序列数据,还推动了多领域多变量时间序列应用的创新。文档中的代码示例和详细的模型描述有助于读者快速理解和复现该项目,促进学术和技术交流。建议读者在实践中结合自己的数据集进行调试和优化,以达到最佳的预测效果。
<think>好的,用户想要找关于Java大型企业面试的资料或经验。首先,我需要根据用户提到的引用内容来整合相关信息。用户提供的引用中有提到HR考察候选人的方面,比如性格、沟通能力等,还有具体的Java面试经验和推荐的书籍,比如《Java核心知识》、《高并发与多线程》等。这些资料应该作为重点推荐。 接下来,用户可能需要知道如何系统准备面试。根据引用内容,分阶段准备会比较合理,比如技术基础、项目经验和综合能力。技术基础部分需要覆盖Java核心、并发编程、JVM、数据库、框架和分布式系统,这些都是大型企业常考的内容。推荐书籍和文档需要对应引用中的资料,比如引用2提到的那些书籍,可以逐一列出。 项目经验部分,用户可能需要了解如何有效展示自己的项目,这里可以结合引用1中提到的合作能力和学习能力,强调项目中的难点和解决方案,以及团队合作的经验。综合能力方面,引用1提到HR关注的点,所以需要准备行为面试题,比如沟通和冲突解决,同时算法题也是大厂常考的,推荐LeetCode和《剑指Offer》。 另外,用户可能还需要实际的面经分享,引用2提到了拼多多的面试经验,可以建议参考类似的文档,并推荐技术社区如牛客网和掘金。引用3提到的学习资料包可能对自学有帮助,需要提醒用户注意资料的更新性。 最后,要确保回答结构清晰,分点列出,每个部分都对应到用户的需求,同时自然融入引用内容,并在末尾添加引用标识。可能还需要生成相关问题,比如如何准备技术面试、项目经验如何优化等,帮助用户进一步深入。</think>以下是为您整理的Java大型企业面试资料与经验指南,结合高频考点和实际案例,分模块呈现: ### 一、技术能力考察重点 1. **Java核心技术栈** - 集合框架:HashMap红黑树实现与扩容机制(JDK8+)[^2] - 并发编程:线程池7大参数、AQS原理、ConcurrentHashMap分段锁优化 - JVM:G1收集器工作原理、ZGC停顿控制、内存逃逸分析 $$ \text{堆内存模型} = \text{Eden} + 2\times\text{Survivor} + \text{Tenured} $$ 2. **分布式系统设计** - CAP定理应用场景 - 分布式事务(Seata的AT模式、TCC模式) - 服务熔断(Hystrix vs Sentinel) ### 二、典型面试题解析 **高频题目示例:** ```java // 双重检查锁单例模式(注意volatile作用) public class Singleton { private volatile static Singleton instance; public static Singleton getInstance() { if (instance == null) { synchronized (Singleton.class) { if (instance == null) { instance = new Singleton(); } } } return instance; } } ``` *考察点:内存可见性、指令重排序、锁粒度控制* ### 三、面试准备策略 1. **知识体系构建** - 推荐书单:《Java编程思想》+《Java并发编程实战》组合学习 - 源码阅读:Spring IOC容器初始化流程、MyBatis执行器体系 2. **项目经验提炼** - 使用STAR法则描述技术难点 - 准备架构图绘制(Visio/ProcessOn) - 故障排查案例整理(如:Full GC问题定位) ### 四、大厂面试流程揭秘 1. 技术面(3-5轮) - 基础面:手写算法(LeetCode中等难度) - 架构面:系统设计(如:设计秒杀系统) - 交叉面:跨团队技术方案讨论 2. HR面核心问题: - 职业规划与团队适配度评估[^1] - 压力测试场景模拟(如:项目延期处理) ### 五、必备资源推荐 1. 文档资料: - 《Java面试知识点解析》2023修订版[^3] - 美团技术团队《分布式系统设计实践》 2. 在线资源: - 牛客网历年真题库 - 极客时间《Java核心技术36讲》
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值