数据管理与版本控制
- 数据管道的设计:从原始数据到特征工程的自动化流程
- 数据版本化工具(如DVC)的使用场景与案例
- 数据质量监控:异常检测与漂移预警
模型训练与实验管理
- 分布式训练框架(如Horovod、Ray)的选型与优化
- 实验跟踪工具(MLflow、Weights & Biases)的集成方法
- 超参数优化(HPO)与模型评估指标的标准化
模型部署与生产化
模型打包与标准化
- 容器化部署(Docker)与模型格式转换(ONNX、PMML)
- 依赖管理工具(Conda、Pipenv)在环境一致性中的作用
- 轻量级服务化框架(FastAPI、Flask)的对比
持续集成与交付(CI/CD)
- 自动化测试策略:单元测试、集成测试与模型性能测试
- GitOps在MLOps中的实践:ArgoCD与Tekton的流水线设计
- 金丝雀发布与A/B测试的流量切分方案
监控与反馈闭环
生产环境监控体系
- 指标采集:延迟、吞吐量、错误率的实时监控
- 模型性能衰减检测:概念漂移与数据漂移的应对策略
- 日志聚合与分析工具(ELK、Prometheus)的配置
反馈机制与持续迭代
- 用户行为数据的收集与标注回流
- 自动化触发重训练的条件与阈值设定
- 版本回滚与热修复的应急方案设计
案例分析与工具链全景
行业典型场景
- 金融风控模型从开发到上线的全流程优化
- 电商推荐系统的实时更新与多版本管理
开源工具生态对比
- 端到端平台(Kubeflow、MLflow)与自建方案的优劣
- 云服务商(AWS SageMaker、Azure ML)的托管能力分析