论文笔记(四) 【NICE: Non-liner Independent Components Estimation】glow系列

论文地址:NICE模型

    现在打算紧跟生成模型的步伐,看一下最近火起来的流模型,根据Paper_weekly的文章找到了glow模型最原始的论文,NICE模型。本文主要是该篇论文的笔记。

一、论文概述

 摘要部分:

1、NICE全称为Non-linear Independent Component Estimation ,可以翻译为非线性独立分量估计。

2、在本文中,我们需要学得一个确定的非线性转换,能够将数据映射到隐空间,得到独立的隐变量。factorized distribution感觉可以理解为因式分解后的分布。注意这个过程是可逆的,NICE可以将高维数据映射到隐空间,同时可以从隐空间映射到高维数据。

因此,关键在于找到可逆的函数f

3、这个转换过程涉及到Jacobian(雅克比)矩阵和雅克比矩阵的逆。

雅克比矩阵是一阶偏导数以一定方式排列的矩阵,其行列式称为雅克比行列式。

具体而言,函数F为m*n的方程组:

\\a_{11} x_{1}+ a_{12}x_{2}+...+a_{1n}x_{n} = y_{1} \\ a_{21} x_{1}+ a_{22}x_{2}+...+a_{2n}x_{n} = y_{2} \\ ... \\ a_{m1} x_{1}+ a_{m2}x_{2}+...+a_{mn}x_{n} = y_{m}

这些函数的偏导数(如果存在)组成了一个m行n列的矩阵,为雅克比矩阵:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值