深度强化学习(二)强化学习算法的分类

本文介绍了强化学习的五大分类:Model-Free与Model-Based、Policy-Based与Value-Based、回合更新与单步更新、On-Policy与Off-Policy,以及强化学习与模仿学习。详细阐述了各类别的特点及典型算法,帮助读者深入理解强化学习的基本概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对于强化学习的分类,主要参考了莫烦大佬的视频和OpenAI的Spinning Up的介绍。

一、Model-Free和Model-Based两大类

上图是Spinning Up中的分类图。对于model的理解就是强化学习中的环境。根据是否去学习环境来进行分类。根据转移概率是否已知进行分类的。

Model-free就是不去学习和理解环境,环境给出什么信息就是什么信息,常见的方法有policy optimization和Q-learning。

Model-Based是去学习和理解环境,学会用一个模型来模拟环境,通过模拟的环境来得到反馈。根据莫烦大佬的解释,Model-Based相当于比Model-Free多了模拟环境这个环节,通过模拟环境预判接下来会发生的所有情况,然后选择最佳的情况。

二、Policy-Based和Value-Based两大类

根据强化学习是以策略为中心还是以值函数为中心分为两大类。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值