Trimesh 点云与模型ICP配准(Python版本)

10 篇文章 ¥19.90 ¥99.00
本文介绍了使用Python库Trimesh进行点云与模型ICP配准的方法,详细阐述了ICP算法的流程,并提供了实现代码。通过求解点到面片的最近点来解决模型只有面片的问题,实现了点云与模型的有效配准。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、简介

这是一个很有趣的功能,在真正进入主题之前,让我们先回顾一下点云与点云ICP算法的过程,如下图所示:

(1)挑选发生重叠的点云子集,这一步如果原始点云数据量比较巨大,一般会对原始点云进行下采样操作。
(2)匹配特征点。通常是距离最近的两个点,当然这需要视评判的准则而定。
(3) 加权。根据点的匹配程度对找到的对应点进行加权。
(4)抑制匹配点。根据匹配点的匹配程度来对一些质量较差的点对进行抑制(剔除)。
(5)误差最小化。通过最小化距离的平方和来估计变换参数。
(6)点云变换。通过评估出的变换矩阵来转换源点云。

整个过程除了最后一步,剩余的步骤已有大量的文献进行过探索和研究,那么点云与模型的配准又有什么不同呢?主要的不同点就在于,匹配特征点的方式不同,点云与点云ICP过程中,往往只需要查找目标点云中的最近点即可,但点云与模型的ICP配准却不能直接这样做,这是因为模型只有面片的缘故,那么怎么去沿袭传统的ICP算法呢?有需求就自然有解决问题的人,有学者就提出我们可以通过求解点到面片的最近点的方式,来构建特征配准点对,这也就可以使得经典的ICP算法得以继续使用。这里的ICP算法即是

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大鱼BIGFISH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值