ETL可视化工具 DataX -- DataX-Web安装 (三)

引言

DataX 系列文章:

3.1 简介

DataX Web是在DataX之上开发的分布式数据同步工具,提供简单易用的 操作界面,降低用户使用DataX的学习成本,缩短任务配置时间,避免配置过程中出错。用户可通过页面选择数据源即可创建数据同步任务,支持RDBMS、Hive、HBase、ClickHouse、MongoDB等数据源,RDBMS数据源可批量创建数据同步任务,支持实时查看数据同步进度及日志并提供终止同步功能,集成并二次开发xxl-job可根据时间、自增主键增量同步数据。
任务"执行器"支持集群部署,支持执行器多节点路由策略选择,支持超时控制、失败重试、失败告警、任务依赖,执行器CPU.内存.负载的监控等等。后续还将提供更多的数据源支持、数据转换UDF、表结构同步、数据同步血缘等更为复杂的业务场景。

3.2 安装资源说明

  • DataX-Web git地址:https://github.com/WeiYe-Jing/datax-web
  • DataX-Web-UI 前端 git 地址:https://github.com/WeiYe-Jing/datax-web-ui
  • DataX Web用户手册: https://github.com/WeiYe-Jing/datax-web/blob/master/userGuid.md

当前 datax web 有三个 版本,其中

  • v2.1.1 是单体web 应用架构(建议使用)
    DataX-Web 源码下载地址:https://codeload.github.com/WeiYe-Jing/datax-web/zip/refs/heads/2.1.1-release

  • v2.1.2、v2.1.3 为前后端分离架构,但 DataX-Web-UI 并未适配 v2.1.2、v2.1.3 中新增功能(需自行适配)
    DataX-Web 源码下载地址: https://codeload.github.com/WeiYe-Jing/datax-web/zip/refs/heads/2.1.2-release
    DataX-Web-UI 前端 git 地址:https://github.com/WeiYe-Jing/datax-web-ui

3.3 基础软件

(1)MySQL (5.5+) 必选,对应客户端可以选装, Linux服务上若安装mysql的客户端可以通过部署脚本快速初始化数据库
(2)JDK (1.8.0_xxx) 必选
(3)Maven (3.6.1+) 必选
(4)DataX 必选
(5)Python (2.x) (支持Python3需要修改替换datax/bin下面的三个python文件,替换文件在doc/datax-web/datax-python3下) 必选,
主要用于调度执行底层DataX的启动脚本,默认的方式是以Java子进程方式执行DataX,用户可以选择以Python方式来做自定义的改造

3.4 DataX Web 开发环境部署

开发环境: Windows 10
开发工具:idea
版本:datax-web v2.1.1

3.4.1 创建数据库

执行bin/db下面的datax_web.sql文件(注意老版本更新语句有指定库名)

3.4.2 修改项目配置

1.修改datax_admin 下 resources/application.yml文件

#数据源
  datasource:
    username: root
    password: root
    url: jdbc:mysql://localhost:3306/datax_web?serverTimezone=Asia/Shanghai&useLegacyDatetimeCode=false&useSSL=false&nullNamePatternMatchesAll=true&useUnicode=true&characterEncoding=UTF-8
    driver-class-name: com.mysql.jdbc.Driver
<think>嗯,用户想把DataX-Web改造成基于Spark的ETL工具,需要完整的代码和实现方案。首先,我得理解DataX-Web和Spark ETL的区别。DataX-Web是一个基于DataX可视化调度系统,而Spark适合处理大规模数据,性能更好。用户可能希望结合两者的优点,利用Spark的高效处理能力,同时保留DataX-Web可视化调度功能。 接下来,用户可能需要分步骤的改造方案。首先,架构设计方面,可能需要替换DataX的执行引擎为Spark,同时保持任务配置和调度的界面不变。然后,任务配置模块需要适配Spark的参数,比如资源分配和执行模式。接着,执行引擎改造是关键,需要将DataX的Job拆解成Spark的RDD或DataFrame操作,可能还需要开发通用的Spark脚本模板。调度集成部分,要确保Spark任务能被DataX-Web正确触发和监控。 代码示例方面,用户可能需要看到如何用Spark实现数据迁移,比如从MySQL到Hive。此外,配置文件的调整和调度器的集成示例也很重要。比如,如何将Spark作业提交到YARN集群,以及如何在DataX-Web中配置这些任务。 还要考虑用户的实际应用场景,比如他们可能在处理大数据量,需要更快的速度,或者有复杂的转换逻辑。可能还需要优化资源管理,比如动态分配executor,或者处理数据倾斜的问题。另外,用户可能关心如何维护和监控改造后的系统,比如日志收集和错误处理机制。 最后,用户可能希望了解相关的工具和替代方案,比如现有的Spark ETL工具,或者是否值得完全迁移到其他平台。需要比较DataX-Web改造与使用现成工具的利弊,帮助用户做出决策。</think>### DataX-Web 改造为 Spark ETL 工具的实现方案 #### 一、架构改造思路 1. **核心组件替换**:保留DataX-Web的任务调度和可视化界面,将底层数据同步引擎从DataX替换为Spark,实现更高效的分布式计算[^4] 2. **兼容性设计**:保持原有JSON配置格式,增加Spark参数配置段(如executor内存、并行度等) 3. **执行模式扩展**:支持本地模式/YARN模式/K8S模式,通过`spark-submit`提交任务 #### 二、关键改造步骤 ```mermaid graph TD A[DataX-Web界面] --> B(任务配置模块改造) B --> C{执行引擎替换} C --> D[Spark RDD/DataFrame实现] C --> E[Spark SQL适配] D --> F(任务调度集成) E --> F F --> G[监控体系改造] ``` #### 、核心代码示例(Spark ETL脚本) ```python # spark_etl_job.py from pyspark.sql import SparkSession def mysql_to_hive_etl(spark, config): # 读取MySQL数据 df = spark.read.format("jdbc") \ .option("url", config['mysql']['url']) \ .option("dbtable", config['mysql']['table']) \ .option("user", config['mysql']['user']) \ .option("password", config['mysql']['password']) \ .load() # 执行数据清洗转换 transformed_df = df.filter(df["status"] == 1) \ .withColumn("new_col", df["amount"] * 0.8) # 写入Hive transformed_df.write.mode("overwrite") \ .saveAsTable(config['hive']['target_table']) if __name__ == "__main__": spark = SparkSession.builder \ .appName("DataX-Web-Spark-ETL") \ .enableHiveSupport() \ .getOrCreate() # 加载配置文件(需对接DataX-Web配置解析模块) job_config = load_config_from_web() mysql_to_hive_etl(spark, job_config) ``` #### 四、配置文件改造示例 ```json { "job": { "content": [{ "reader": { "name": "mysqlreader", "parameter": { "connection": [{ "jdbcUrl": "jdbc:mysql://127.0.0.1:3306/db", "table": "source_table" }] } }, "writer": { "name": "hivewriter", "parameter": {
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值