Android:Layout_weight的深刻理解

本文详细解释了Android中Layout_weight属性的工作原理,通过实例演示如何分配剩余空间,以及在不同layout_width设置下,权重如何影响视图的尺寸。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近写Demo,突然发现了Layout_weight这个属性,发现网上有很多关于这个属性的有意思的讨论,可是找了好多资料都没有找到一个能够说的清楚的,于是自己结合网上资料研究了一下,终于迎刃而解,写出来和大家分享。

首先看一下Layout_weight属性的作用:它是用来分配属于空间的一个属性,你可以设置他的权重。很多人不知道剩余空间是个什么概念,下面我先来说说剩余空间。

看下面代码:

<?xml version="1.0" encoding="utf-8"?>     
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"     
    android:orientation="vertical"     
    android:layout_width="fill_parent"     
    android:layout_height="fill_parent"     
    >     
<EditText     
    android:layout_width="fill_parent"     
    android:layout_height="wrap_content"     
    android:gravity="left"     
    android:text="one"/>     
<EditText     
    android:layout_width="fill_parent"     
    android:layout_height="wrap_content"     
    android:gravity="center"     
    android:layout_weight="1.0"     
    android:text="two"/>     
    <EditText     
    android:layout_width="fill_parent"     
    android:layout_height="wrap_content"     
    android:gravity="right"     
    android:text="three"/>     
</LinearLayout>     

  

 

运行结果是:

看上面代码:只有Button2使用了Layout_weight属性,并赋值为了1,而Button1和Button3没有设置Layout_weight这个属性,根据API,可知,他们默认是0

下面我就来讲,Layout_weight这个属性的真正的意思:Android系统先按照你设置的3个Button高度Layout_height值wrap_content,给你分配好他们3个的高度,

然后会把剩下来的屏幕空间全部赋给Button2,因为只有他的权重值是1,这也是为什么Button2占了那么大的一块空间。

有了以上的理解我们就可以对网上关于Layout_weight这个属性更让人费解的效果有一个清晰的认识了。

我们来看这段代码:

 

<?xml version="1.0" encoding="UTF-8"?>   
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"   
    android:layout_width="fill_parent"   
    android:layout_height="wrap_content"   
    android:orientation="horizontal" >   
    <TextView   
        android:background="#ff0000"   
        android:layout_width="**"   
        android:layout_height="wrap_content"   
        android:text="1"   
        android:textColor="@android:color/white"   
        android:layout_weight="1"/>   
    <TextView   
        android:background="#cccccc"   
        android:layout_width="**"   
        android:layout_height="wrap_content"   
        android:text="2"   
        android:textColor="@android:color/black"   
        android:layout_weight="2" />   
     <TextView   
        android:background="#ddaacc"   
        android:layout_width="**"   
        android:layout_height="wrap_content"   
        android:text="3"   
        android:textColor="@android:color/black"   
        android:layout_weight="3" />   
</LinearLayout> 

  

三个文本框的都是 layout_width=“wrap_content ”时,会得到以下效果

按照上面的理解,系统先给3个TextView分配他们的宽度值wrap_content(宽度足以包含他们的内容1,2,3即可),然后会把剩下来的屏幕空间按照1:2:3的比列分配给3个textview,所以就出现了上面的图像。

而当layout_width=“fill_parent”时,如果分别给三个TextView设置他们的Layout_weight为1、2、2的话,就会出现下面的效果:

你会发现1的权重小,反而分的多了,这是为什么呢???网上很多人说是当layout_width=“fill_parent”时,weighth值越小权重越大,优先级越高,就好像在背口诀

一样,其实他们并没有真正理解这个问题,真正的原因是Layout_width="fill_parent"的原因造成的。依照上面理解我们来分析:

系统先给3个textview分配他们所要的宽度fill_parent,也就是说每一都是填满他的父控件,这里就死屏幕的宽度

那么这时候的剩余空间=1个parent_width-3个parent_width=-2个parent_width (parent_width指的是屏幕宽度 )

那么第一个TextView的实际所占宽度应该=fill_parent的宽度,即parent_width + 他所占剩余空间的权重比列1/5 * 剩余空间大小(-2 parent_width)=3/5parent_width

同理第二个TextView的实际所占宽度=parent_width + 2/5*(-2parent_width)=1/5parent_width;

第三个TextView的实际所占宽度=parent_width + 2/5*(-2parent_width)=1/5parent_width;所以就是3:1:1的比列显示了。

这样你也就会明白为什么当你把三个Layout_weight设置为1、2、3的话,会出现下面的效果了:

第三个直接不显示了,为什么呢?一起来按上面方法算一下吧:

系统先给3个textview分配他们所要的宽度fill_parent,也就是说每一都是填满他的父控件,这里就死屏幕的宽度

那么这时候的剩余空间=1个parent_width-3个parent_width=-2个parent_width (parent_width指的是屏幕宽度 )

那么第一个TextView的实际所占宽度应该=fill_parent的宽度,即parent_width + 他所占剩余空间的权重比列1/6 * 剩余空间大小(-2 parent_width)=2/3parent_width

同理第二个TextView的实际所占宽度=parent_width + 2/6*(-2parent_width)=1/3parent_width;

第三个TextView的实际所占宽度=parent_width + 3/6*(-2parent_width)=0parent_width;所以就是2:1:0的比列显示了。第三个就直接没有空间了。

版权声明:本文为博主原创文章,未经博主允许不得转载。

转载于:https://www.cnblogs.com/childhooding/p/4781036.html

### 使用Transformer模型进行图像分类的方法 #### 方法概述 为了使Transformer能够应用于图像分类任务,一种有效的方式是将图像分割成固定大小的小块(patches),这些小块被线性映射为向量,并加上位置编码以保留空间信息[^2]。 #### 数据预处理 在准备输入数据的过程中,原始图片会被切分成多个不重叠的patch。假设一张尺寸为\(H \times W\)的RGB图像是要处理的对象,则可以按照设定好的宽度和高度参数来划分该图像。例如,对于分辨率为\(224\times 224\)像素的图像,如果选择每边切成16个部分的话,那么最终会得到\((224/16)^2=196\)个小方格作为单独的特征表示单元。之后,每一个这样的补丁都会通过一个简单的全连接层转换成为维度固定的嵌入向量。 ```python import torch from torchvision import transforms def preprocess_image(image_path, patch_size=16): transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), # 假设目标分辨率是224x224 transforms.ToTensor(), ]) image = Image.open(image_path).convert('RGB') tensor = transform(image) patches = [] for i in range(tensor.shape[-2] // patch_size): # 高度方向上的循环 row_patches = [] for j in range(tensor.shape[-1] // patch_size): # 宽度方向上的循环 patch = tensor[:, :, i*patch_size:(i+1)*patch_size, j*patch_size:(j+1)*patch_size].flatten() row_patches.append(patch) patches.extend(row_patches) return torch.stack(patches) ``` #### 构建Transformer架构 构建Vision Transformer (ViT),通常包括以下几个组成部分: - **Patch Embedding Layer**: 将每个图像块转化为低维向量; - **Positional Encoding Layer**: 添加绝对或相对位置信息给上述获得的向量序列; - **Multiple Layers of Self-Attention and Feed Forward Networks**: 多层自注意机制与前馈神经网络交替堆叠而成的核心模块; 最后,在顶层附加一个全局平均池化层(Global Average Pooling)以及一个多类别Softmax回归器用于预测类标签。 ```python class VisionTransformer(nn.Module): def __init__(self, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, drop_rate=0.): super().__init__() self.patch_embed = PatchEmbed(embed_dim=embed_dim) self.pos_embed = nn.Parameter(torch.zeros(1, self.patch_embed.num_patches + 1, embed_dim)) self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) dpr = [drop_rate for _ in range(depth)] self.blocks = nn.Sequential(*[ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=dpr[i], ) for i in range(depth)]) self.norm = nn.LayerNorm(embed_dim) self.head = nn.Linear(embed_dim, num_classes) def forward(self, x): B = x.shape[0] cls_tokens = self.cls_token.expand(B, -1, -1) x = self.patch_embed(x) x = torch.cat((cls_tokens, x), dim=1) x += self.pos_embed x = self.blocks(x) x = self.norm(x) return self.head(x[:, 0]) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值