15、Python 数据处理与可视化:高级聚合与绘图技巧

Python 数据处理与可视化:高级聚合与绘图技巧

高级数据聚合

在数据处理过程中, transform() apply() 这两个函数能帮助我们执行多种分组操作,有些操作还相当复杂。

假设我们要将原始数据框和分组聚合计算得到的数据框(例如求和结果)合并到同一个数据框中。以下是具体示例:

import pandas as pd
import numpy as np

frame = pd.DataFrame({ 'color':['white','red','green','red','green'],
                      'price1':[5.56,4.20,1.30,0.56,2.75],
                      'price2':[4.75,4.12,1.60,0.75,3.15]})
print(frame)
# 输出
#    color  price1  price2
# 0  white    5.56    4.75
# 1    red    4.20    4.12
# 2  green    1.30    1.60
# 3    red    0.56    0.75
# 4  green    2.75    3.15

sums = frame.groupby('color').sum().add_prefix('tot_')
print(sums)
# 输出
#        tot_price1  tot_price2
# color
# green        4.05   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值