道路车辆动力学:驱动系统建模与分析
在车辆动力学的研究中,驱动系统的建模和分析至关重要。它涉及到多个方面,包括轮胎力的动态特性、简单车辆轮胎模型以及差速器的设计等。下面将详细介绍这些内容。
1. 动态轮胎力
在车辆行驶过程中,轮胎力的准确建模对于理解车辆的动力学行为至关重要。传统上,将纵向力建模为纵向滑移的函数在车辆接近静止时并不实用,因为虚拟速度$v_N$的强烈依赖性会导致问题。当$v_N$值较小时,会产生非常大的特征值,这意味着车轮旋转的微分方程是刚性的;而$v_N$值过大时,结果的准确性会变差。
为了解决这个问题,一种简单而有效的方法是对一阶动态轮胎力进行扩展。动态纵向轮胎力可以通过以下公式建模:
[F_x = F_D^x = c_x x_e + d_x \dot{x} e]
其中,$x_e$描述了纵向轮胎变形,$c_x$和$d_x$分别表示相应的刚度和阻尼特性。车轮的角动量方程为:
[\Theta \Delta \dot{\Omega} = -r_S (c_x x_e + d_x \dot{x}_e)]
轮胎变形$x_e$由一阶微分方程定义:
[(v_T^ d_x + dF_0^x) \dot{x}_e = -v_T^ c_x x_e - dF_0^x (v_x - r_D \Omega)]
其中,广义轮胎力特性的全局导数$f_G$由纵向轮胎力特性的初始斜率$dF_0^x$近似。在纯纵向滑移的情况下,修改后的传输速度为:
[v_T^* = r_D |\Omega| + v_N]
将其代入上式,可得到:
[((|v_x + r_D \Delta \Ome